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Combinatorial formulation

Problem (k-hashing)

How can we upper bound the cardinality of a set of vectors of length n
over an alphabet of size k , with the property that, for every subset of k
vectors there is a coordinate in which they all differ?

Very easy to formulate but very difficult to solve.
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Information Theory and Computer Science interpretation

Figure: ISIT 2017 [5].
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Zero-Error Capacity with List Decoding

Figure: ISIT 2017 [5].

1 The decoder outputs a list of L messages

2 There is an error if the original message is not in the list

3 Zero-error code: the correct message is always in the list ⇐⇒ No
L + 1 codewords are compatible with any output sequence
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Definition of Zero-Error code under List Decoding

Given a channel (bipartite-graph) H = (V ,W ,E ) where V correspond to
channel inputs, W to channel outputs and (v ,w) ∈ E if w can be received
when v is trasmitted.

Definition (Zero-error code under LD)

A code C ⊆ V n achieve zero-error under list-of-L decoding if for every
subset {c(1), c(2), . . . , c(L+1)} of L + 1 codewords, there is a coordinate i

such that the symbols c
(1)
i , c

(2)
i , . . . , c

(L+1)
i don’t share a common

neighbor in W .

Meaning that C is an independent set in (L + 1)-uniform hypergraph
defined on V n where hyperedges correspond to tuples whose i ’th symbols
have a common neighbor in W for every i .

(see Körner-Marton 1990, ”On the capacity of uniform hypergraph”)

S. Costa, S. Della Fiore, M. Dalai (UNIBS) New Bounds for k-hashing May 15, 2020 6 / 24



(L+1)/L Channel - Example

Let L = 3 then 4/3-Channel follows:

Figure: ISIT 2017 [5].

The four inputs have no common output meaning we can build 4-tuples
which cannot be confused
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Perfect Hash function

It is an injective function that maps distinct elements of a set into a set
of integers, with no collision.

Figure: Wikipedia.
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Perfect Hash functions for k = 4

Figure: ISIT 2017 [5].

Perfect hashing: any x , y , z , t are separated by some hash function.
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Hansel’s Lemma

Let [N] = {1, 2, . . . ,N}, KN is the complete graph on [N], and

1 Gi , i ∈ J, finite sequence of bipartite graphs on [N]

2 τi is the fraction of non-isolated vertices in Gi
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Lemma (Hansel)

If ∪i∈JGi = KN then

log2(N) ≤
∑
i∈J

τi
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Hansel’s Lemma for k-hashing

Let C be a set of vectors (code) that is k-separated. Given k − 2
codewords x1, x2, . . . , xk−2, let G

x1,x2,...,xk−2

i be the graph on
C \ {x1, x2, . . . , xk−2} with

E (G
x1,x2,...,xk−2

i ) =
{

(y , y ′) : (x1,i , x2,i , . . . , xk−2,i , yi , y
′
i ) are all distinct

}
1 If |{x1,i , x2,i , . . . , xk−2,i}| < k − 2 then Gi is the empty graph

2 Otherwise Gi is a bipartite graph

It is easy to see that ∪iG
x1,x2,...,xk−2

i = K|C |−k+2 then

We can apply Hansel
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Upper bound on the cardinality of k-separated sets

Given a k-separated set of vectors of length n over an alphabet of
cardinality k and fixing k − 2 vectors from C , we know thanks to Hansel’s
Lemma that

log2(|C | − k + 2) ≤
n∑

i=1

τi (x1, x2, . . . , xk−2)

where τi (x1, x2, . . . , xk−2) is the fraction of non-isolated vertices in
G

x1,x2,...,xk−2

i .

How to get a good bound?

Choose x1, x2, . . . , xk−2 such that
∑

i τi is small.

S. Costa, S. Della Fiore, M. Dalai (UNIBS) New Bounds for k-hashing May 15, 2020 12 / 24



Upper bound on the cardinality of k-separated sets

Given a k-separated set of vectors of length n over an alphabet of
cardinality k and fixing k − 2 vectors from C , we know thanks to Hansel’s
Lemma that

log2(|C | − k + 2) ≤
n∑

i=1

τi (x1, x2, . . . , xk−2)

where τi (x1, x2, . . . , xk−2) is the fraction of non-isolated vertices in
G

x1,x2,...,xk−2

i .

How to get a good bound?

Choose x1, x2, . . . , xk−2 such that
∑

i τi is small.

S. Costa, S. Della Fiore, M. Dalai (UNIBS) New Bounds for k-hashing May 15, 2020 12 / 24



Known upper bounds from Literature

Let Rk = lim supn→∞
log2|C |

n (rate of the laregest k-hash code) then

1 Fredman-Komlós (1985) we have that Rk ≤ k!
kk−1 picking

x1, x2, . . . , xk−2 uniformly at random from the code

2 Arikan (1994) for k = 4 picking x1, x2 with small Hamming distance
we have that R4 ≤ 0.3512 (using Plotkin bound)

3 Dalai, Guruswami, Radhakrishnan (2017) for k = 4 mixing the
previous two ideas we have that R4 ≤ 6/19 ≈ 0.3158

4 Guruswami, Riazanov (2018) improve for every k the bound of F-K.
They compute the value only for k = 5, 6 (for k > 6 modulo a
conjecture).

5 Costa, Dalai (2020) for k = 5, 6 we have that R5 ≤ 0.1697 and
R6 ≤ 0.0875
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Costa, Dalai (2020) - 1

Main idea is to construct a family of subcodes Ω such that any k − 2
codewords of a given subcode collide in all coordinates from 1 to l .
Example for k = 5:

Prefix = l Suffix = n− l

1432 · · · 1...

2314 · · · 2
1423 · · · 3

3214 · · · 5

...
...

...
...

...
...

⊂ {1, 2, . . . , 5}n−l

⊂ {1, 2, . . . , 5}n−l

⊂ {1, 2, . . . , 5}n−l

5321 · · · 1

...

...
...

...

Pick randomly from

the same subcode

x1, x2, x3
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Costa, Dalai (2020) - 2

Some constraints to keep in mind:

1 If Ω is a partition of {1, 2, . . . , k}l then |Ω| ≤
⌊(

k
k−3

)l(1+o(1))
⌋

if for

all w ∈ Ω and i = 1, 2, . . . , l , the i-th projection of w has cardinality
at most k − 3.

2 If l ≤ nR−2 log2 n

log( k
k−3

)
, we can consider asymptotically only subcodes Cw

such that |Cw | ≥ n.
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Costa, Dalai (2020) - strategy

First choose a subcode Cw with probability λw = |Cw |
|C | , then pick uniformly

at random x1, x2, . . . , xk−2 from Cw .

log2(|C | − k + 2) ≤ Ew∈Ω[E[
n∑

i=l+1

τi (x1, x2, . . . , xk−2)]]

=
n∑

i=l+1

Ew∈Ω[E[τi (x1, x2, . . . , xk−2)]]

If x1,i , x2,i , . . . , xk−2,i are distinct then

τi (x1, x2, . . . , xk−2) = |C |
|C |−k+2 (1−

∑k−2
j=1 fi ,x(j,i)

) where fi is the empirical
probability distribution on the i-th coordinate.
Otherwise τi (x1, x2, . . . , xk−2) = 0.
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The ψ function

Definition (ψ function)

Given two probability vectors p = (p1, p2, . . . , pk) and q = (q1, q2, . . . , qk)

ψ(p, q) =
∑
σ∈Sk

pσ(1)pσ(2) · · · pσ(k−2)qσ(k−1)

E[τi (x1, x2, . . . , xk−2)] = (1 + o(1))ψ(fi |w , fi )

At the end we get

Ew∈Ω[E[τi (x1, x2, . . . , xk−2)]] = (1 + o(1))
∑
w∈Ω

λwψ(fi |w , fi )
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A clever symmetrization - The Ψ function

Since ψ is linear its second variable, we have that

Ew∈Ω[E[τi (x1, x2, . . . , xk−2)]]

= (1 + o(1))
1

2

∑
w ,µ∈Ω

λwλµ
(
ψ(fi |w , fi |µ) + ψ(fi |µ, fi |w )

)

Definition (Ψ function)

Given two probability vectors p = (p1, p2, . . . , pk) and q = (q1, q2, . . . , qk)

Ψ(p; q) = ψ(p, q) + ψ(q, p)

=
∑
σ∈Sk

pσ(1)pσ(2) · · · pσ(k−2)qσ(k−1) + qσ(1)qσ(2) · · · qσ(k−2)pσ(k−1)
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Upper bound for the rate of k-hash codes

Let Mk be the maximum of Ψ over probability vectors p and q, then

log2(|C |) ≤ (1 + o(1))
1

2
(n − l)

∑
w ,µ∈Ω

λwλµMk

= (1 + o(1))
1

2
(n − l)Mk

Setting l =

⌊
nR−2 log2 n

log( k
k−3

)

⌋
we get as n→∞ that

Rk ≤
(

2

Mk
+

1

log(k/(k − 3))

)−1
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In which point Ψ attains the maximum?

Thanks to different properties of the Ψ function, we can restrict the
number of points in which Ψ attains the maximum (independently from k)
and then we can test each one with Mathematica (or by hand...).

Theorem (Costa, Dalai)

k = 5 the maximum is at (γ, δ, . . . , δ; 0, 1
4 , . . . ,

1
4 ) where δ = 1/44(4 +

√
5)

k = 6 the maximum is at (1, 0, . . . , 0; 0, 1
5 , . . . ,

1
5 )

Conjecture (Costa, Dalai)

For k > 6 the global maximum of the Ψ function is at

(1, 0, . . . , 0; 0,
1

k − 1
, . . . ,

1

k − 1
)
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How to extend the work also for k = 7, 8 ?

Introducing a parameter 0 < ε < 1
k−1 that clusterize the probability

distributions of subcodes into ”balanced” and ”unbalanced” categories.

We have 4 different cases of (p, q) pairs, each associated with its
maximum of Ψ (dependent on ε):

1 balanced-balanced → M1

2 unbalanced-balanced → M2

3 unbalanced-unbalanced on a different coordinate → M3

4 unbalanced-unbalanced on the same coordinate → M4
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New upper bounds for k = 6, 7, 8

Eω∈Ω[E[τi (x1, x2, . . . , xk−2)]]

≤

1

2

 ∑
ω,µ∈Ωb

λωλµM1 + 2
∑

ω∈Ωb,µ∈Ωu

λωλµM2 +
k∑

i=1

∑
ω,µ∈Ωi

λωλµM3 + 2
∑
i<j

∑
ω∈Ωj ,µ∈Ωi

λωλµM4


=

λ2
0M1 + 2λ0(1− λ0)M2 +

(1− λ0)2

k
M3 + (1− λ0)2M4 = f (λ0)

≤

max
0≤λ0≤1

f (λ0) = M

where λ0 =
∑

ω∈Ωb
λω.

GOAL → get a small M changing ε
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New upper bounds for k = 6, 7, 8

In this case we upper bound the quadratic form and we get the following
bound that depends on M

Rk ≤
(

2

M
+

1

log(k/(k − 3))

)−1

Theorem (Costa, Della Fiore, Dalai)

Given a k-separated set of vectors C the rates Rk for k = 6, 7, 8 are upper
bounded as follow

M ≈ 0.1866→ R6 ≤ 0.08488 vs RFK
6 ≤ 0.09259,RCD

6 ≤ 0.08759

M ≈ 0.0861594→ R7 ≤ 0.040898 vs RFK
7 ≤ 0.04284,RG

7 ≤ 0.04279

M ≈ 0.0388599→ R8 ≤ 0.018889 vs RFK
8 ≤ 0.01923,RG

8 ≤ 0.01922
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