New Bounds for k - hashing

S. Costa, S. Della Fiore, M. Dalai

Università degli studi di Brescia

May 15, 2020

Overview

(1) Three equivalent formulation

- Combinatorial formulation
- Information Theory interpretation
- Computer Science interpretation
(2) Hansel's Lemma
- Definition
- Application to k-hashing
(3) Upper bounds on the cardinality of k-hash codes
- Known upper bounds from literature
- Main ideas behind Costa and Dalai's work for $k=5,6$
- New bounds for $k=6,7,8$

Combinatorial formulation

Problem (k-hashing)

How can we upper bound the cardinality of a set of vectors of length n over an alphabet of size k, with the property that, for every subset of k vectors there is a coordinate in which they all differ?

Combinatorial formulation

Problem (k-hashing)

How can we upper bound the cardinality of a set of vectors of length n over an alphabet of size k, with the property that, for every subset of k vectors there is a coordinate in which they all differ?

Very easy to formulate but very difficult to solve.

Information Theory and Computer Science interpretation

Figure: ISIT 2017 [5].

Zero-Error Capacity with List Decoding

$$
\begin{array}{cc}
\text { Codewords } & \text { Message } \\
& w \in\{1,2, \ldots, M\}
\end{array}
$$

- 22213300102

Figure: ISIT 2017 [5].
(1) The decoder outputs a list of L messages
(2) There is an error if the original message is not in the list
(3) Zero-error code: the correct message is always in the list \Longleftrightarrow No $L+1$ codewords are compatible with any output sequence

Definition of Zero-Error code under List Decoding

Given a channel (bipartite-graph) $H=(V, W, E)$ where V correspond to channel inputs, W to channel outputs and $(v, w) \in E$ if w can be received when v is trasmitted.

Definition (Zero-error code under LD)

A code $C \subseteq V^{n}$ achieve zero-error under list-of- L decoding if for every subset $\left\{c^{(1)}, c^{(2)}, \ldots, c^{(L+1)}\right\}$ of $L+1$ codewords, there is a coordinate i such that the symbols $c_{i}^{(1)}, c_{i}^{(2)}, \ldots, c_{i}^{(L+1)}$ don't share a common neighbor in W.

Meaning that C is an independent set in $(L+1)$-uniform hypergraph defined on V^{n} where hyperedges correspond to tuples whose i 'th symbols have a common neighbor in W for every i.
(see Körner-Marton 1990, "On the capacity of uniform hypergraph")

(L+1)/L Channel - Example

Let $L=3$ then 4/3-Channel follows:

Figure: ISIT 2017 [5].
The four inputs have no common output meaning we can build 4-tuples which cannot be confused

$$
\begin{array}{rllllllll}
x & = & 0 & 2 & 0 & 2 & 3 & 1 & \cdots \\
y & = & 2 & 3 & 1 & 0 & 2 & 1 & \cdots \\
z & = & 1 & 3 & 2 & 3 & 3 & 0 & \cdots \\
t & = & 1 & 0 & 3 & 2 & 1 & 2 & \cdots
\end{array}
$$

Perfect Hash function

It is an injective function that maps distinct elements of a set into a set of integers, with no collision.

Figure: Wikipedia.

Perfect Hash functions for $k=4$

Figure: ISIT 2017 [5].

Perfect hashing: any x, y, z, t are separated by some hash function.

Hansel's Lemma

Let $[N]=\{1,2, \ldots, N\}, K_{N}$ is the complete graph on $[N]$, and
(1) $G_{i}, i \in J$, finite sequence of bipartite graphs on $[N]$
(2) τ_{i} is the fraction of non-isolated vertices in G_{i}

$$
K_{6}=G_{1} \cup G_{2} \cup G_{3} \cup G_{4}
$$

Hansel's Lemma

Let $[N]=\{1,2, \ldots, N\}, K_{N}$ is the complete graph on $[N]$, and
(1) $G_{i}, i \in J$, finite sequence of bipartite graphs on $[N]$
(2) τ_{i} is the fraction of non-isolated vertices in G_{i}

$$
K_{6}=G_{1} \cup G_{2} \cup G_{3} \cup G_{4}
$$

Lemma (Hansel)

If $\cup_{i \in J} G_{i}=K_{N}$ then

$$
\log _{2}(N) \leq \sum_{i \in J} \tau_{i}
$$

Hansel's Lemma for k-hashing

Let C be a set of vectors (code) that is k-separated. Given $k-2$ codewords $x_{1}, x_{2}, \ldots, x_{k-2}$, let $G_{i}^{x_{1}, x_{2}, \ldots, x_{k-2}}$ be the graph on $C \backslash\left\{x_{1}, x_{2}, \ldots, x_{k-2}\right\}$ with

$$
E\left(G_{i}^{x_{1}, x_{2}, \ldots, x_{k-2}}\right)=\left\{\left(y, y^{\prime}\right):\left(x_{1, i}, x_{2, i}, \ldots, x_{k-2, i}, y_{i}, y_{i}^{\prime}\right) \text { are all distinct }\right\}
$$

(1) If $\left|\left\{x_{1, i}, x_{2, i}, \ldots, x_{k-2, i}\right\}\right|<k-2$ then G_{i} is the empty graph
(2) Otherwise G_{i} is a bipartite graph

It is easy to see that $\cup_{i} G_{i}^{x_{1}, x_{2}, \ldots, x_{k-2}}=K_{|C|-k+2}$ then

Hansel's Lemma for k-hashing

Let C be a set of vectors (code) that is k-separated. Given $k-2$ codewords $x_{1}, x_{2}, \ldots, x_{k-2}$, let $G_{i}^{x_{1}, x_{2}, \ldots, x_{k-2}}$ be the graph on $C \backslash\left\{x_{1}, x_{2}, \ldots, x_{k-2}\right\}$ with

$$
E\left(G_{i}^{x_{1}, x_{2}, \ldots, x_{k-2}}\right)=\left\{\left(y, y^{\prime}\right):\left(x_{1, i}, x_{2, i}, \ldots, x_{k-2, i}, y_{i}, y_{i}^{\prime}\right) \text { are all distinct }\right\}
$$

(1) If $\left|\left\{x_{1, i}, x_{2, i}, \ldots, x_{k-2, i}\right\}\right|<k-2$ then G_{i} is the empty graph
(2) Otherwise G_{i} is a bipartite graph

It is easy to see that $\cup_{i} G_{i}^{x_{1}, x_{2}, \ldots, x_{k-2}}=K_{|C|-k+2}$ then
We can apply Hansel

Upper bound on the cardinality of k-separated sets

Given a k-separated set of vectors of length n over an alphabet of cardinality k and fixing $k-2$ vectors from C, we know thanks to Hansel's Lemma that

$$
\log _{2}(|C|-k+2) \leq \sum_{i=1}^{n} \tau_{i}\left(x_{1}, x_{2}, \ldots, x_{k-2}\right)
$$

where $\tau_{i}\left(x_{1}, x_{2}, \ldots, x_{k-2}\right)$ is the fraction of non-isolated vertices in $G_{i}^{x_{1}, x_{2}, \ldots, x_{k-2}}$.

How to get a good bound?

Upper bound on the cardinality of k-separated sets

Given a k-separated set of vectors of length n over an alphabet of cardinality k and fixing $k-2$ vectors from C, we know thanks to Hansel's Lemma that

$$
\log _{2}(|C|-k+2) \leq \sum_{i=1}^{n} \tau_{i}\left(x_{1}, x_{2}, \ldots, x_{k-2}\right)
$$

where $\tau_{i}\left(x_{1}, x_{2}, \ldots, x_{k-2}\right)$ is the fraction of non-isolated vertices in $G_{i}^{x_{1}, x_{2}, \ldots, x_{k-2}}$.

How to get a good bound?
Choose $x_{1}, x_{2}, \ldots, x_{k-2}$ such that $\sum_{i} \tau_{i}$ is small.

Known upper bounds from Literature

Let $R_{k}=\lim \sup _{n \rightarrow \infty} \frac{\log _{2}|C|}{n}$ (rate of the laregest k-hash code) then
(1) Fredman-Komlós (1985) we have that $R_{k} \leq \frac{k!}{k^{k-1}}$ picking $x_{1}, x_{2}, \ldots, x_{k-2}$ uniformly at random from the code

Known upper bounds from Literature

Let $R_{k}=\lim \sup _{n \rightarrow \infty} \frac{\log _{2}|C|}{n}$ (rate of the laregest k-hash code) then
(1) Fredman-Komlós (1985) we have that $R_{k} \leq \frac{k!}{k^{k-1}}$ picking $x_{1}, x_{2}, \ldots, x_{k-2}$ uniformly at random from the code
(2) Arikan (1994) for $k=4$ picking x_{1}, x_{2} with small Hamming distance we have that $R_{4} \leq 0.3512$ (using Plotkin bound)

Known upper bounds from Literature

Let $R_{k}=\lim \sup _{n \rightarrow \infty} \frac{\log _{2}|C|}{n}$ (rate of the laregest k-hash code) then
(1) Fredman-Komlós (1985) we have that $R_{k} \leq \frac{k!}{k^{k-1}}$ picking $x_{1}, x_{2}, \ldots, x_{k-2}$ uniformly at random from the code
(2) Arikan (1994) for $k=4$ picking x_{1}, x_{2} with small Hamming distance we have that $R_{4} \leq 0.3512$ (using Plotkin bound)
(3) Dalai, Guruswami, Radhakrishnan (2017) for $k=4$ mixing the previous two ideas we have that $R_{4} \leq 6 / 19 \approx 0.3158$

Known upper bounds from Literature

Let $R_{k}=\lim \sup _{n \rightarrow \infty} \frac{\log _{2}|C|}{n}$ (rate of the laregest k-hash code) then
(1) Fredman-Komlós (1985) we have that $R_{k} \leq \frac{k!}{k^{k-1}}$ picking $x_{1}, x_{2}, \ldots, x_{k-2}$ uniformly at random from the code
(2) Arikan (1994) for $k=4$ picking x_{1}, x_{2} with small Hamming distance we have that $R_{4} \leq 0.3512$ (using Plotkin bound)
(3) Dalai, Guruswami, Radhakrishnan (2017) for $k=4$ mixing the previous two ideas we have that $R_{4} \leq 6 / 19 \approx 0.3158$
(9) Guruswami, Riazanov (2018) improve for every k the bound of F-K. They compute the value only for $k=5,6$ (for $k>6$ modulo a conjecture).

Known upper bounds from Literature

Let $R_{k}=\lim \sup _{n \rightarrow \infty} \frac{\log _{2}|C|}{n}$ (rate of the laregest k-hash code) then
(1) Fredman-Komlós (1985) we have that $R_{k} \leq \frac{k!}{k^{k-1}}$ picking $x_{1}, x_{2}, \ldots, x_{k-2}$ uniformly at random from the code
(2) Arikan (1994) for $k=4$ picking x_{1}, x_{2} with small Hamming distance we have that $R_{4} \leq 0.3512$ (using Plotkin bound)
(3) Dalai, Guruswami, Radhakrishnan (2017) for $k=4$ mixing the previous two ideas we have that $R_{4} \leq 6 / 19 \approx 0.3158$
(9) Guruswami, Riazanov (2018) improve for every k the bound of F-K. They compute the value only for $k=5,6$ (for $k>6$ modulo a conjecture).
(5) Costa, Dalai (2020) for $k=5,6$ we have that $R_{5} \leq 0.1697$ and $R_{6} \leq 0.0875$

Costa, Dalai (2020) - 1

Main idea is to construct a family of subcodes Ω such that any $k-2$ codewords of a given subcode collide in all coordinates from 1 to l. Example for $k=5$:

Pick randomly from the same subcodex_{1}, x_{2}, x_{3}	ix $=1 \longrightarrow$ Suffix $=n-l$	
	$\begin{gathered} 1432 \cdots 1 \\ \vdots \\ 2314 \cdots 2 \end{gathered}$	$\subset\{1,2, \ldots, 5\}^{n-l}$
	$\begin{gathered} 1423 \cdots 3 \\ \vdots 214 \cdots 5 \end{gathered}$	$\subset\{1,2, \ldots, 5\}^{n-l}$
	$\vdots \quad \vdots \quad \vdots$	\vdots
	$\begin{array}{cccc}\vdots & \vdots & \vdots \\ 5321 & \cdots & 1\end{array}$	$\subset\{1,2, \ldots, 5\}^{n-l}$

Costa, Dalai (2020) - 2

Some constraints to keep in mind:
(1) If Ω is a partition of $\{1,2, \ldots, k\}^{\prime}$ then $|\Omega| \leq\left\lfloor\left(\frac{k}{k-3}\right)^{\prime(1+o(1))}\right\rfloor$ if for all $w \in \Omega$ and $i=1,2, \ldots, l$, the i-th projection of w has cardinality at most $k-3$.
(2) If $I \leq \frac{n R-2 \log _{2} n}{\log \left(\frac{k}{k-3}\right)}$, we can consider asymptotically only subcodes C_{w} such that $\left|C_{w}\right| \geq n$.

Costa, Dalai (2020) - strategy

First choose a subcode C_{w} with probability $\lambda_{w}=\frac{\left|C_{w}\right|}{|C|}$, then pick uniformly at random $x_{1}, x_{2}, \ldots, x_{k-2}$ from C_{w}.

$$
\begin{aligned}
\log _{2}(|C|-k+2) & \leq \mathbb{E}_{w \in \Omega}\left[\mathbb{E}\left[\sum_{i=l+1}^{n} \tau_{i}\left(x_{1}, x_{2}, \ldots, x_{k-2}\right)\right]\right] \\
& =\sum_{i=l+1}^{n} \mathbb{E}_{w \in \Omega}\left[\mathbb{E}\left[\tau_{i}\left(x_{1}, x_{2}, \ldots, x_{k-2}\right)\right]\right]
\end{aligned}
$$

If $x_{1, i}, x_{2, i}, \ldots, x_{k-2, i}$ are distinct then
$\tau_{i}\left(x_{1}, x_{2}, \ldots, x_{k-2}\right)=\frac{|C|}{|C|-k+2}\left(1-\sum_{j=1}^{k-2} f_{i, x_{(j, i)}}\right)$ where f_{i} is the empirical probability distribution on the i-th coordinate.
Otherwise $\tau_{i}\left(x_{1}, x_{2}, \ldots, x_{k-2}\right)=0$.

The ψ function

Definition (ψ function)

Given two probability vectors $p=\left(p_{1}, p_{2}, \ldots, p_{k}\right)$ and $q=\left(q_{1}, q_{2}, \ldots, q_{k}\right)$

$$
\psi(p, q)=\sum_{\sigma \in S_{k}} p_{\sigma(1)} p_{\sigma(2)} \cdots p_{\sigma(k-2)} q_{\sigma(k-1)}
$$

$\mathbb{E}\left[\tau_{i}\left(x_{1}, x_{2}, \ldots, x_{k-2}\right)\right]=(1+o(1)) \psi\left(f_{i \mid w}, f_{i}\right)$
At the end we get

$$
\mathbb{E}_{w \in \Omega}\left[\mathbb{E}\left[\tau_{i}\left(x_{1}, x_{2}, \ldots, x_{k-2}\right)\right]\right]=(1+o(1)) \sum_{w \in \Omega} \lambda_{w} \psi\left(f_{i \mid w}, f_{i}\right)
$$

A clever symmetrization - The ψ function

Since ψ is linear its second variable, we have that

$$
\begin{aligned}
& \mathbb{E}_{w \in \Omega}\left[\mathbb{E}\left[\tau_{i}\left(x_{1}, x_{2}, \ldots, x_{k-2}\right)\right]\right] \\
& \quad=(1+o(1)) \frac{1}{2} \sum_{w, \mu \in \Omega} \lambda_{w} \lambda_{\mu}\left(\psi\left(f_{i \mid w}, f_{i \mid \mu}\right)+\psi\left(f_{i \mid \mu}, f_{i \mid w}\right)\right)
\end{aligned}
$$

Definition (Ψ function)

Given two probability vectors $p=\left(p_{1}, p_{2}, \ldots, p_{k}\right)$ and $q=\left(q_{1}, q_{2}, \ldots, q_{k}\right)$

$$
\begin{aligned}
\Psi(p ; q) & =\psi(p, q)+\psi(q, p) \\
& =\sum_{\sigma \in S_{k}} p_{\sigma(1)} p_{\sigma(2)} \cdots p_{\sigma(k-2)} q_{\sigma(k-1)}+q_{\sigma(1)} q_{\sigma(2)} \cdots q_{\sigma(k-2)} p_{\sigma(k-1)}
\end{aligned}
$$

Upper bound for the rate of k-hash codes

Let M_{k} be the maximum of Ψ over probability vectors p and q, then

$$
\begin{aligned}
\log _{2}(|C|) & \leq(1+o(1)) \frac{1}{2}(n-l) \sum_{w, \mu \in \Omega} \lambda_{w} \lambda_{\mu} M_{k} \\
& =(1+o(1)) \frac{1}{2}(n-l) M_{k}
\end{aligned}
$$

Setting $I=\left\lfloor\frac{n R-2 \log _{2} n}{\log \left(\frac{k}{k-3}\right)}\right\rfloor$ we get as $n \rightarrow \infty$ that

$$
R_{k} \leq\left(\frac{2}{M_{k}}+\frac{1}{\log (k /(k-3))}\right)^{-1}
$$

In which point Ψ attains the maximum?

Thanks to different properties of the Ψ function, we can restrict the number of points in which Ψ attains the maximum (independently from k) and then we can test each one with Mathematica (or by hand...).

Theorem (Costa, Dalai)

$k=5$ the maximum is at $\left(\gamma, \delta, \ldots, \delta ; 0, \frac{1}{4}, \ldots, \frac{1}{4}\right)$ where $\delta=1 / 44(4+\sqrt{5})$ $k=6$ the maximum is at $\left(1,0, \ldots, 0 ; 0, \frac{1}{5}, \ldots, \frac{1}{5}\right)$

Conjecture (Costa, Dalai)

For $k>6$ the global maximum of the ψ function is at

$$
\left(1,0, \ldots, 0 ; 0, \frac{1}{k-1}, \ldots, \frac{1}{k-1}\right)
$$

How to extend the work also for $k=7,8$?

Introducing a parameter $0<\epsilon<\frac{1}{k-1}$ that clusterize the probability distributions of subcodes into "balanced" and "unbalanced" categories.

We have 4 different cases of (p, q) pairs, each associated with its maximum of Ψ (dependent on ϵ):
(1) balanced-balanced $\rightarrow M_{1}$
(2) unbalanced-balanced $\rightarrow M_{2}$
(3) unbalanced-unbalanced on a different coordinate $\rightarrow M_{3}$
(1) unbalanced-unbalanced on the same coordinate $\rightarrow M_{4}$

New upper bounds for $k=6,7,8$

$$
\begin{gathered}
\mathbb{E}_{\omega \in \Omega}\left[\mathbb{E}\left[\tau_{i}\left(x_{1}, x_{2}, \ldots, x_{k-2}\right)\right]\right] \\
\leq \\
\frac{1}{2}\left[\sum_{\omega, \mu \in \Omega_{b}} \lambda_{\omega} \lambda_{\mu} M_{1}+2 \sum_{\omega \in \Omega_{b}, \mu \in \Omega_{\mu}} \lambda_{\omega} \lambda_{\mu} M_{2}+\sum_{i=1}^{k} \sum_{\omega, \mu \in \Omega_{i}} \lambda_{\omega} \lambda_{\mu} M_{3}+2 \sum_{i<j} \sum_{\omega \in \Omega_{j}, \mu \in \Omega_{i}} \lambda_{\omega} \lambda_{\mu} M_{4}\right] \\
= \\
\lambda_{0}^{2} M_{1}+2 \lambda_{0}\left(1-\lambda_{0}\right) M_{2}+\frac{\left(1-\lambda_{0}\right)^{2}}{k} M_{3}+\left(1-\lambda_{0}\right)^{2} M_{4}=f\left(\lambda_{0}\right) \\
\leq \\
\max _{0 \leq \lambda_{0} \leq 1} f\left(\lambda_{0}\right)=M
\end{gathered}
$$

where $\lambda_{0}=\sum_{\omega \in \Omega_{b}} \lambda_{\omega}$.

New upper bounds for $k=6,7,8$

$$
\begin{gathered}
\mathbb{E}_{\omega \in \Omega}\left[\mathbb{E}\left[\tau_{i}\left(x_{1}, x_{2}, \ldots, x_{k-2}\right)\right]\right] \\
\leq \\
\frac{1}{2}\left[\sum_{\omega, \mu \in \Omega_{b}} \lambda_{\omega} \lambda_{\mu} M_{1}+2 \sum_{\omega \in \Omega_{b}, \mu \in \Omega_{\mu}} \lambda_{\omega} \lambda_{\mu} M_{2}+\sum_{i=1}^{k} \sum_{\omega, \mu \in \Omega_{i}} \lambda_{\omega} \lambda_{\mu} M_{3}+2 \sum_{i<j} \sum_{\omega \in \Omega_{j}, \mu \in \Omega_{i}} \lambda_{\omega} \lambda_{\mu} M_{4}\right] \\
= \\
\lambda_{0}^{2} M_{1}+2 \lambda_{0}\left(1-\lambda_{0}\right) M_{2}+\frac{\left(1-\lambda_{0}\right)^{2}}{k} M_{3}+\left(1-\lambda_{0}\right)^{2} M_{4}=f\left(\lambda_{0}\right) \\
\leq \\
\max _{0 \leq \lambda_{0} \leq 1} f\left(\lambda_{0}\right)=M
\end{gathered}
$$

where $\lambda_{0}=\sum_{\omega \in \Omega_{b}} \lambda_{\omega}$.
GOAL \rightarrow get a small M changing ϵ

New upper bounds for $k=6,7,8$

In this case we upper bound the quadratic form and we get the following bound that depends on M

$$
R_{k} \leq\left(\frac{2}{M}+\frac{1}{\log (k /(k-3))}\right)^{-1}
$$

Theorem (Costa, Della Fiore, Dalai)

Given a k-separated set of vectors C the rates R_{k} for $k=6,7,8$ are upper bounded as follow
$M \approx 0.1866 \rightarrow R_{6} \leq 0.08488$ vs $R_{6}^{F K} \leq 0.09259, R_{6}^{C D} \leq 0.08759$
$M \approx 0.0861594 \rightarrow R_{7} \leq 0.040898$ vs $R_{7}^{F K} \leq 0.04284, R_{7}^{G} \leq 0.04279$
$M \approx 0.0388599 \rightarrow R_{8} \leq 0.018889$ vs $R_{8}^{F K} \leq 0.01923, R_{8}^{G} \leq 0.01922$

References

目 M．L．Fredman and J．Komlós，＂On the size of separating systems and families of perfect hash functions＂， 1984.

嗇 J．Korner and K．Marton，＂New bounds for perfect hashing via information theory＂， 1988.
目 E．Arikan，＂An upper bound on the zero－error list－coding capacity＂， 1993.

A．Nilli，＂Perfect hashing and probability＂， 1994.
冨 M．Dalai，V．Guruswami，and J．Radhakrishnan，＂An improved bound on the zero－error list－decoding capacity of the $4 / 3$ channel＂， 2017－2020．
國 S．Costa，M．Dalai，＂New bounds for perfect k－hashing＂， 2020.

