The Probabilistic Method applied to Graphs

Stefano Della Fiore

Università degli studi di Brescia

July 8, 2020

It is a powerful tool to attack many problems in discrete mathematics.

The main idea is trying to prove that a structure with certain properties exists there are two main steps:

- define an appropriate probability space of structures;
- Show that the desired properties hold in this space with positive probability.

It is a powerful tool to attack many problems in discrete mathematics.

The main idea is trying to prove that a structure with certain properties exists there are two main steps:

- define an appropriate probability space of structures;
- Show that the desired properties hold in this space with positive probability.

The method is best illustrated by examples

Ramsey-number

The Ramsey-number R(k, l) is the smallest integer *n* such that in any 2-coloring of the edges of a complete graph on *n* vertices K_n by red and blue, either there is a red K_k or a blue K_l . Ramsey in 1929 showed that R(k, l) is finite for any two integers *k* and *l*.

Figure: Example of a 2-coloring in which there is no K_3 monochromatic, i.e., R(3,3) > 5

Theorem

If
$$\binom{n}{k}2^{1-\binom{k}{2}} < 1$$
 then $R(k,k) > n$. Thus $R(k,k) > \lfloor 2^{\frac{k}{2}} \rfloor$ for all $k \ge 3$.

Proof.

Consider a random 2-coloring of the edges of K_n . For any fix set R of k vertices, let A_R be the event that the induced subgraph of K_n on R is monochromatic. Clearly $P(A_R) = 2^{1-\binom{k}{2}}$ and $P(\bigcup_R A_R) \leq \binom{n}{k} 2^{1-\binom{k}{2}}$. If $\binom{n}{k} 2^{1-\binom{k}{2}} < 1$ then with positive probability no event A_R occurs, i.e., R(k,k) > n. Take $n = \lfloor 2^{\frac{k}{2}} \rfloor$.

Best
$$n \sim \frac{1}{e\sqrt{2}}(1+o(1))k2^{k/2}$$
.

Ramsey-number 2

Theorem

For any integer n

$$R(k,k) > n - \binom{n}{k} 2^{1 - \binom{k}{2}}$$

Proof.

Consider a random 2-coloring of the edges of K_n . For any set R of size k let X_R be the indicator random variable for the event that the induced subgraph of K_n on R is monochromatic. Let $X = \sum_R X_R$. $E[X] = \binom{n}{k} 2^{1-\binom{k}{2}}$. There exists a 2-coloring for which $X \leq E[X]$, fix such a coloring. Remove from each monochromatic k-set one vertex.

Best $n \sim rac{1}{e}(1-o(1))k2^{k/2}$ that gives $R(k,k) > rac{1}{e}(1+o(1))k2^{k/2}$.

Lemma (Lovász 1975)

Let $A_1, A_2, ..., A_n$ be events in arbitrary probability space. A directed graph D = (V, E) is called dependency graph for the events $A_1, A_2, ..., A_n$ if for each *i*, the event A_i is mutually independent of all events $\{A_i : (i,j) \notin E\}$.

Suppose that there exists real numbers $x_1, x_2, ..., x_n$ such that $0 \le x_i < 1$ and $P(A_i) \le x_i \prod_{(i,j)\in E} (1-x_j)$ for all $1 \le i \le n$. Then

$$P(\cap_{i=1}^{n}\overline{A}_{i}) \geq \prod_{i=1}^{n}(1-x_{i}).$$

Lovász Local Lemma - Proof

Induction on
$$S \subset \{1, 2, ..., n\}$$
, $|S| = s < n$ and any $i \notin S$,
 $P(A_i | \cap_{j \in S} \overline{A}_j) \le x_i$.

Clearly true for s = 0. Assuming it holds for s' < s. Put $S_1 = \{j \in S : (i, j) \in E\}$ and $S_2 = S \setminus S_1$. Then

$$P(A_i|\cap_{j\in S}\overline{A}_j) = \frac{P(A_i\cap \left(\cap_{j\in S_1}\overline{A}_j\right)|\cap_{k\in S_2}\overline{A}_k)}{P(\cap_{j\in S_1}\overline{A}_j|\cap_{k\in S_2}\overline{A}_k)}$$

the numerator can be easily upper bound $P(A_i \cap (\bigcap_{j \in S_1} \overline{A}_j) | \bigcap_{k \in S_2} \overline{A}_k) \leq P(A_i | \bigcap_{k \in S_2} \overline{A}_k) = P(A_i) \leq x_i \prod_{(i,j) \in E} (1-x_j).$ The denominator can be lower bounded thanks to the induction hypothesis, suppose $S_1 = (j_1, j_2, \dots, j_r)$

$$P(\bigcap_{h=1}^{r}\overline{A}_{j_{h}}|\bigcap_{k\in S_{2}}\overline{A}_{k})=\prod_{h=1}^{r}(1-P(A_{j_{h}}|(\bigcap_{l=1}^{h-1}\overline{A}_{j_{l}})\cap(\bigcap_{k\in S_{2}}\overline{A}_{k})))\geq\prod_{(i,j)\in E}^{n}(1-x_{j})$$

Let A_1, A_2, \ldots, A_n be events in arbitrary probability space. Suppose that each event A_i is dependent of a set of at most d events A_j , and that $P(A_i) \leq p$ for all $1 \leq i \leq n$. If

$$ep(d+1) \leq 1$$

then $P(\cap_{i=1}^{n}\overline{A}_{i}) > 0.$

Proof.

If d = 0 then is trivial. Otherwise, we can apply the Lovász Local Lemma taking $x_i = \frac{1}{d+1} < 1$ for i = 1, 2, ..., n and using the fact that $\left(1 - \frac{1}{d+1}\right)^d > \frac{1}{e}$.

Ramsey Numbers - Again

Consider the diagonal Ramsey number R(k, k) and consider the random 2-coloring of the edges of K_n . For each set S of size k, $P(A_S) = 2^{1-\binom{k}{2}}$ is the probability that the subgraph is monochromatic. Each event A_S is not mutually independent of all events A_T for which $|S \cap T| \ge 2$. Applying the symmetric Local Lemma with $p = 2^{1-\binom{k}{2}}$ and $d = \binom{k}{2}\binom{n}{k-2}$ we have that:

Theorem

If $e\left(\binom{k}{2}\binom{n}{k-2}+1\right)2^{1-\binom{k}{2}} < 1$ then R(k,k) > n. Some analysis shows that we should take n as follows

$$R(k,k) > rac{\sqrt{2}}{e}(1+o(1))k2^{k/2}$$

Hypergraphs

Generalization of a graph in which an edge can join an arbitrary number of vertices while in an ordinary graph an edge connects two vertices. H = (V, E) where V is the set of vertices and E is the set of hyper-edges.

Figure: Example of a hypergraph with |V| = 7 and |E| = 4

Theorem (Erdős 1963)

Every n-uniform hypergraph with less than 2^{n-1} edges is 2-colorable, i.e, there exists a 2-coloring of V such that no edge is monochromatic.

Proof.

Let H = (V, E) be a *n*-uniform hypergraph with $|E| < 2^{n-1}$ and consider a random 2-coloring of V. For each edge $e \in E$, let A_e be the event that e is monochromatic. Then

$$P(\cup_{e\in E}A_e)\leq \sum_{e\in E}P(A_e)=|E|2^{1-n}<1$$

so there exists a 2-coloring without monochromatic edges.

Independent Sets

Theorem

Let
$$G = (V, E)$$
 have n vertices and $nd/2$ edges, $d \ge 1$. Then $\alpha(G) \ge \frac{n}{2d}$

Proof.

Let $S \subseteq V$ be a random subset defined by $Pr[v \in S] = p$. Let X = |S| and Y be the number of edges in $G|_S$. For each $e = \{i, j\} \in E$ let Y_e be the indicator random variable for the event $i, j \in S$. So, $Y = \sum_e Y_e$. Then

$$E[Y_e] = Pr[i, j \in S] = p^2 \rightarrow E[Y] = nd/2p^2$$

Clearly E[X] = np, then

$$E[X - Y] = np - nd/2p^2$$

Set p = 1/d in order to maximize E[X - Y].

High Girth and Chromatic Number - 1

girth(G) = size of the shortest cycle

Theorem (Erdős 1959)

For all k, I there exists a graph G with girth(G) > I and $\chi(G) > k$.

Fix $\theta < 1/I$ and let $G \sim G(n, p)$ with $p = n^{\theta-1}$. Let X be the number of cycles of size at most I. Then

$$E[X] = \sum_{i=3}^{l} \frac{(n)_i}{2i} p^i \le \sum_{i=3}^{l} \frac{n^{\theta i}}{2i} = o(n)$$

In particular $Pr[X \ge n/2] = o(1)$ and setting $x = \lceil 3/p \log n \rceil$ we have

$$\Pr[\alpha(G) \ge x] \le {\binom{n}{x}}(1-p)^{\binom{x}{2}} < \left(ne^{-p(x-1)/2}\right)^x = o(1)$$

《曰》《聞》《臣》《臣》

Let *n* be sufficiently large so that both events have probability less than 1/2, there exists a graph *G* with less than n/2 cycles of length at most *I* and $\alpha(G) < 3n^{1-\theta} \log n$. Remove from *G* a vertex from each cycle of length at most *I*. This gives a graph G^* with $|G^*| \ge n/2$ and $girth(G^*) > I$. Clearly $\alpha(G^*) \le \alpha(G)$ then

$$\chi(G^*) \geq \frac{|G^*|}{\alpha(G^*)} \geq \frac{n/2}{\alpha(G)} \geq \frac{n/2}{3n^{1-\theta}\log n} = \frac{n^{\theta}}{6\log n}$$

Take a sufficiently large n so that the last term is greater than k.

A tournament on a set V of n players is an orientation T = (V, E) of edges of the complete graph.

Figure: Two tournaments when |V| = 3 and |V| = 4

We say that a player v beats a player w if the edge (v, w) belongs to the edge-set.

A tournament has the property S_k if for every set of k players there is one who beats them all.

Theorem

If $\binom{n}{k}(1-2^{-k})^{n-k} < 1$ then there is a tournament on n vertices that has the property S_k .

Proof.

Consider a random tournament, for every fixed subset K of size k, let A_K be the event that there is no vertex which beats all the members of K. Clearly, $P(A_K) = (1 - 2^{-k})^{n-k}$ and $P(\bigcup_K A_K) \leq \binom{n}{k}(1 - 2^{-k})^{n-k}$. If $\binom{n}{k}(1 - 2^{-k})^{n-k} < 1$ then with positive probability no event A_K occurs.

Theorem (Szele (1943))

There is a tournament T with n players and at least $n!2^{-(n-1)}$ Hamiltonian Paths.

Proof.

In the random tournament, let X be the number of Hamiltonian paths. For each permutation σ , let X_{σ} be the indicator random variable for σ giving a Hamiltonian path, i.e., $(\sigma(i), \sigma(i+1)) \in T$ for $1 \leq i < n$. Then $X = \sum_{\sigma} X_{\sigma}$ and

$$E[X] = \sum_{\sigma} E[X_{\sigma}] = n! 2^{-(n-1)}.$$

Hence some tournament has at least E[X] Hamiltonian paths.

Problem

What is the maximum possible number of directed Hamiltonian paths in a tournament on n vertices?

Call this number P(n). Szele shows that the following limit exists

$$\frac{1}{2} \leq \lim_{n \to \infty} \left(\frac{P(n)}{n!}\right)^{\frac{1}{n}} \leq \frac{1}{2^{3/4}}$$

and conjectures that the exact value is 1/2.

Theorem (Alon (1990))

There exists a positive constant c such that for every n

$$P(n) \leq cn^{\frac{3}{2}} \frac{n!}{2^{n-1}}$$

For a tournament T, denote by P(T) the number of directed Hamiltonian paths in T, C(T) the number of Hamiltonian cycles in T while F(T) the number of spanning subgraphs of T in which each vertex has indegree and outdegree equal to 1.

Clearly, $C(T) \leq F(T)$.

If T = (V, E) is a tournament on a set of *n* vertices, let A_T be the adjacency matrix of T ($a_{ij} = 1$ if $(i, j) \in E$, $a_{ij} = 0$ otherwise) and let r_i denote the number of ones in row *i* of A_T . Clearly,

$$\sum_{i=1}^{n} r_i = \binom{n}{2}$$

Interpreting combinatorially the terms in the expansion of the permanent of $A_T = (a_{ij})$ we have that

$$F(T) = per(A_T) = \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i\sigma(i)}$$

The numbers r_i are the outdegrees of the vertices of T. So, if exists one $r_i = 0$ then F(T) = C(T) = 0. Otherwise we can apply Brégman's Theorem that states:

Theorem (Brégman)

Let $A = (a_{ij})$ be a $n \times n$ matrix with all $a_{ij} \in \{0, 1\}$. Let r_i be the number of ones in the *i*-th row. We have that

$$per(A) \leq \prod_{i=1}^n (r_i!)^{1/r_i}.$$

Can be proved that the maximum of the right hand side is achieved when all r_i are "equal", i.e., if *n* is odd $r_i = \binom{n}{2}/n = \frac{n-1}{2}$.

Asymptotically the Stirling's formula gives

Proposition

For every tournament T on n vertices

$$C(T) \leq F(T) \leq (1+o(1)) rac{\sqrt{\pi}}{\sqrt{2}e} n^{3/2} rac{(n-1)!}{2^n}$$

To complete the proof, given a tournament S on n vertices and let T be a random tournament obtained from S by adding a new vertex x and picking each oriented edge connecting x to all the other vertices randomly and independently.

For every fixed Hamiltonian path in S, the probability that it can be extended to an Hamiltonian cycle in T is exactly 1/4.

Figure: v_1, v_2, \ldots, v_n is an Hamiltonian path in S that is extended to a cycle in T

Thus the expected cycles in T are $\frac{1}{4}P(S)$, so, there exists a T for which $C(T) \ge \frac{1}{4}P(S)$.

Thanks to the previous Proposition

$$C(T) \leq F(T) \leq (1+o(1))rac{\sqrt{\pi}}{\sqrt{2}e}(n+1)^{3/2}rac{n!}{2^{n+1}},$$

and we know that $P(S) \leq 4C(T)$, then

$$P(S) \leq O\left(n^{3/2}\frac{n!}{2^{n-1}}\right).$$

This completes the proof of the theorem.

N. Alon and J.H. Spencer, "The Probabilistic Method Second Edition", 2000.

► 4 Ξ

▶ ★ 문 ▶

æ