The Probabilistic Method applied to Graphs

Stefano Della Fiore

Università degli studi di Brescia

July 8, 2020

Introduction

It is a powerful tool to attack many problems in discrete mathematics.
The main idea is trying to prove that a structure with certain properties exists there are two main steps:
(1) define an appropriate probability space of structures;
(2) show that the desired properties hold in this space with positive probability.

Introduction

It is a powerful tool to attack many problems in discrete mathematics.
The main idea is trying to prove that a structure with certain properties exists there are two main steps:
(1) define an appropriate probability space of structures;
(2) show that the desired properties hold in this space with positive probability.

The method is best illustrated by examples

Ramsey-number

The Ramsey-number $R(k, l)$ is the smallest integer n such that in any 2-coloring of the edges of a complete graph on n vertices K_{n} by red and blue, either there is a red K_{k} or a blue K_{l}. Ramsey in 1929 showed that $R(k, I)$ is finite for any two integers k and l.

Figure: Example of a 2-coloring in which there is no K_{3} monochromatic, i.e., $R(3,3)>5$

Ramsey-number 1

Theorem

$$
\text { If }\binom{n}{k} 2^{1-\binom{k}{2}}<1 \text { then } R(k, k)>n \text {. Thus } R(k, k)>\left\lfloor 2^{\frac{k}{2}}\right\rfloor \text { for all } k \geq 3 \text {. }
$$

Proof.

Consider a random 2-coloring of the edges of K_{n}. For any fix set R of k vertices, let A_{R} be the event that the induced subgraph of K_{n} on R is monochromatic. Clearly $P\left(A_{R}\right)=2^{1-\binom{k}{2}}$ and $P\left(\cup_{R} A_{R}\right) \leq\binom{ n}{k} 2^{1-\binom{k}{2} \text {. If }}$ $\binom{n}{k} 2^{1-\binom{k}{2}}<1$ then with positive probability no event A_{R} occurs, i.e., $R(k, k)>n$. Take $n=\left\lfloor 2^{\frac{k}{2}}\right\rfloor$.

Best $n \sim \frac{1}{e \sqrt{2}}(1+o(1)) k 2^{k / 2}$.

Ramsey-number 2

Theorem

For any integer n

$$
R(k, k)>n-\binom{n}{k} 2^{1-\binom{k}{2}}
$$

Proof.

Consider a random 2-coloring of the edges of K_{n}. For any set R of size k let X_{R} be the indicator random variable for the event that the induced subgraph of K_{n} on R is monochromatic. Let $X=\sum_{R} X_{R} . E[X]=\binom{n}{k} 2^{1-\binom{k}{2} \text {. There }}$ exists a 2 -coloring for which $X \leq E[X]$, fix such a coloring. Remove from each monochromatic k-set one vertex.
Best $n \sim \frac{1}{e}(1-o(1)) k 2^{k / 2}$ that gives $R(k, k)>\frac{1}{e}(1+o(1)) k 2^{k / 2}$.

Lovász Local Lemma

Lemma (Lovász 1975)

Let $A_{1}, A_{2}, \ldots, A_{n}$ be events in arbitrary probability space. A directed graph $D=(V, E)$ is called dependency graph for the events $A_{1}, A_{2}, \ldots, A_{n}$ if for each i, the event A_{i} is mutually independent of all events $\left\{A_{j}:(i, j) \notin E\right\}$.
Suppose that there exists real numbers $x_{1}, x_{2}, \ldots, x_{n}$ such that $0 \leq x_{i}<1$ and $P\left(A_{i}\right) \leq x_{i} \prod_{(i, j) \in E}\left(1-x_{j}\right)$ for all $1 \leq i \leq n$. Then

$$
P\left(\cap_{i=1}^{n} \bar{A}_{i}\right) \geq \prod_{i=1}^{n}\left(1-x_{i}\right) .
$$

Lovász Local Lemma - Proof

Induction on $S \subset\{1,2, \ldots, n\},|S|=s<n$ and any $i \notin S$,

$$
P\left(A_{i} \mid \cap_{j \in S} \bar{A}_{j}\right) \leq x_{i} .
$$

Clearly true for $s=0$. Assuming it holds for $s^{\prime}<s$.
Put $S_{1}=\{j \in S:(i, j) \in E\}$ and $S_{2}=S \backslash S_{1}$. Then

$$
P\left(A_{i} \mid \cap_{j \in S} \bar{A}_{j}\right)=\frac{P\left(A_{i} \cap\left(\cap_{j \in S_{1}} \bar{A}_{j}\right) \mid \cap_{k \in S_{2}} \bar{A}_{k}\right)}{P\left(\cap_{j \in S_{1}} \bar{A}_{j} \mid \cap_{k \in S_{2}} \bar{A}_{k}\right)}
$$

the numerator can be easily upper bound

$$
P\left(A_{i} \cap\left(\cap_{j \in S_{1}} \bar{A}_{j}\right) \mid \cap_{k \in S_{2}} \bar{A}_{k}\right) \leq P\left(A_{i} \mid \cap_{k \in S_{2}} \bar{A}_{k}\right)=P\left(A_{i}\right) \leq x_{i} \prod_{(i, j) \in E}\left(1-x_{j}\right)
$$

The denominator can be lower bounded thanks to the induction hypothesis, suppose $S_{1}=\left(j_{1}, j_{2}, \ldots, j_{r}\right)$

$$
P\left(\cap_{h=1}^{r} \bar{A}_{j_{h}} \mid \cap_{k \in S_{2}} \bar{A}_{k}\right)=\prod_{h=1}^{r}\left(1-P\left(A_{j_{h}} \mid\left(\cap_{l=1}^{h-1} \bar{A}_{j l}\right) \cap\left(\cap_{k \in S_{2}} \bar{A}_{k}\right)\right)\right) \geq \prod_{(i, j) \in E}^{n}\left(1-x_{j}\right)
$$

Lovász Local Lemma - Symmetric Case

Let $A_{1}, A_{2}, \ldots, A_{n}$ be events in arbitrary probability space. Suppose that each event A_{i} is dependent of a set of at most d events A_{j}, and that $P\left(A_{i}\right) \leq p$ for all $1 \leq i \leq n$. If

$$
e p(d+1) \leq 1
$$

then $P\left(\cap_{i=1}^{n} \bar{A}_{i}\right)>0$.

Proof.

If $d=0$ then is trivial. Otherwise, we can apply the Lovász Local Lemma taking $x_{i}=\frac{1}{d+1}<1$ for $i=1,2, \ldots, n$ and using the fact that

$$
\left(1-\frac{1}{d+1}\right)^{d}>\frac{1}{e} .
$$

Ramsey Numbers - Again

Consider the diagonal Ramsey number $R(k, k)$ and consider the random 2-coloring of the edges of K_{n}. For each set S of size $k, P\left(A_{S}\right)=2^{1-\binom{k}{2}}$ is the probability that the subgraph is monochromatic. Each event A_{S} is not mutually independent of all events A_{T} for which $|S \cap T| \geq 2$. Applying the symmetric Local Lemma with $p=2^{1-\binom{k}{2}}$ and $d=\binom{k}{2}\binom{n}{k-2}$ we have that:

Theorem

If e $\left.\binom{k}{2}\binom{n}{k-2}+1\right) 2^{1-\binom{k}{2}}<1$ then $R(k, k)>n$. Some analysis shows that we should take n as follows

$$
R(k, k)>\frac{\sqrt{2}}{e}(1+o(1)) k 2^{k / 2}
$$

Hypergraphs

Generalization of a graph in which an edge can join an arbitrary number of vertices while in an ordinary graph an edge connects two vertices. $H=(V, E)$ where V is the set of vertices and E is the set of hyper-edges.

Figure: Example of a hypergraph with $|V|=7$ and $|E|=4$

n-uniform hypergraphs

Theorem (Erdős 1963)

Every n-uniform hypergraph with less than 2^{n-1} edges is 2-colorable, i.e, there exists a 2-coloring of V such that no edge is monochromatic.

Proof.

Let $H=(V, E)$ be a n-uniform hypergraph with $|E|<2^{n-1}$ and consider a random 2-coloring of V. For each edge $e \in E$, let A_{e} be the event that e is monochromatic. Then

$$
P\left(\cup_{e \in E} A_{e}\right) \leq \sum_{e \in E} P\left(A_{e}\right)=|E| 2^{1-n}<1
$$

so there exists a 2-coloring without monochromatic edges.

Independent Sets

Theorem

Let $G=(V, E)$ have n vertices and $n d / 2$ edges, $d \geq 1$. Then $\alpha(G) \geq \frac{n}{2 d}$

Proof.

Let $S \subseteq V$ be a random subset defined by $\operatorname{Pr}[v \in S]=p$. Let $X=|S|$ and Y be the number of edges in $\left.G\right|_{S}$. For each $e=\{i, j\} \in E$ let Y_{e} be the indicator random variable for the event $i, j \in S$. So, $Y=\sum_{e} Y_{e}$. Then

$$
E\left[Y_{e}\right]=\operatorname{Pr}[i, j \in S]=p^{2} \rightarrow E[Y]=n d / 2 p^{2}
$$

Clearly $E[X]=n p$, then

$$
E[X-Y]=n p-n d / 2 p^{2}
$$

Set $p=1 / d$ in order to maximize $E[X-Y]$.

High Girth and Chromatic Number - 1

$\operatorname{girth}(G)=$ size of the shortest cycle

Theorem (Erdős 1959)

For all k, I there exists a graph G with $\operatorname{girth}(G)>I$ and $\chi(G)>k$.
Fix $\theta<1 / I$ and let $G \sim G(n, p)$ with $p=n^{\theta-1}$. Let X be the number of cycles of size at most I. Then

$$
E[X]=\sum_{i=3}^{\prime} \frac{(n)_{i}}{2 i} p^{i} \leq \sum_{i=3}^{\prime} \frac{n^{\theta i}}{2 i}=o(n)
$$

In particular $\operatorname{Pr}[X \geq n / 2]=o(1)$ and setting $x=\lceil 3 / p \log n\rceil$ we have

$$
\operatorname{Pr}[\alpha(G) \geq x] \leq\binom{ n}{x}(1-p)^{\binom{x}{2}}<\left(n e^{-p(x-1) / 2}\right)^{x}=o(1)
$$

High Girth and Chromatic Number - 2

Let n be sufficiently large so that both events have probability less than $1 / 2$, there exists a graph G with less than $n / 2$ cycles of length at most I and $\alpha(G)<3 n^{1-\theta} \log n$. Remove from G a vertex from each cycle of length at most I. This gives a graph G^{*} with $\left|G^{*}\right| \geq n / 2$ and $\operatorname{girth}\left(G^{*}\right)>I$. Clearly $\alpha\left(G^{*}\right) \leq \alpha(G)$ then

$$
\chi\left(G^{*}\right) \geq \frac{\left|G^{*}\right|}{\alpha\left(G^{*}\right)} \geq \frac{n / 2}{\alpha(G)} \geq \frac{n / 2}{3 n^{1-\theta} \log n}=\frac{n^{\theta}}{6 \log n}
$$

Take a sufficiently large n so that the last term is greater than k.

A tournament on a set V of n players is an orientation $T=(V, E)$ of edges of the complete graph.

Figure: Two tournaments when $|V|=3$ and $|V|=4$

We say that a player v beats a player w if the edge (v, w) belongs to the edge-set.

Tournament - Theorem

A tournament has the property S_{k} if for every set of k players there is one who beats them all.

Theorem

If $\binom{n}{k}\left(1-2^{-k}\right)^{n-k}<1$ then there is a tournament on n vertices that has the property S_{k}.

Proof.

Consider a random tournament, for every fixed subset K of size k, let A_{K} be the event that there is no vertex which beats all the members of K. Clearly, $P\left(A_{K}\right)=\left(1-2^{-k}\right)^{n-k}$ and $P\left(\cup_{K} A_{K}\right) \leq\binom{ n}{k}\left(1-2^{-k}\right)^{n-k}$. If $\binom{n}{k}\left(1-2^{-k}\right)^{n-k}<1$ then with positive probability no event A_{K} occurs.

Theorem (Szele (1943))

There is a tournament T with n players and at least $n!2^{-(n-1)}$ Hamiltonian Paths.

Proof.

In the random tournament, let X be the number of Hamiltonian paths. For each permutation σ, let X_{σ} be the indicator random variable for σ giving a Hamiltonian path, i.e., $(\sigma(i), \sigma(i+1)) \in T$ for $1 \leq i<n$. Then $X=\sum_{\sigma} X_{\sigma}$ and

$$
E[X]=\sum_{\sigma} E\left[X_{\sigma}\right]=n!2^{-(n-1)} .
$$

Hence some tournament has at least $E[X]$ Hamiltonian paths.

Tournament Szele - 2

Problem

What is the maximum possible number of directed Hamiltonian paths in a tournament on n vertices?

Call this number $P(n)$. Szele shows that the following limit exists

$$
\frac{1}{2} \leq \lim _{n \rightarrow \infty}\left(\frac{P(n)}{n!}\right)^{\frac{1}{n}} \leq \frac{1}{2^{3 / 4}}
$$

and conjectures that the exact value is $1 / 2$.

Theorem (Alon (1990))

There exists a positive constant c such that for every n

$$
P(n) \leq c n^{\frac{3}{2}} \frac{n!}{2^{n-1}}
$$

For a tournament T, denote by $P(T)$ the number of directed Hamiltonian paths in $T, C(T)$ the number of Hamiltonian cycles in T while $F(T)$ the number of spanning subgraphs of T in which each vertex has indegree and outdegree equal to 1 .
Clearly, $C(T) \leq F(T)$.

If $T=(V, E)$ is a tournament on a set of n vertices, let A_{T} be the adjacency matrix of $T\left(a_{i j}=1\right.$ if $(i, j) \in E, a_{i j}=0$ otherwise $)$ and let r_{i} denote the number of ones in row i of A_{T}. Clearly,

$$
\sum_{i=1}^{n} r_{i}=\binom{n}{2}
$$

Interpreting combinatorially the terms in the expansion of the permanent of $A_{T}=\left(a_{i j}\right)$ we have that

$$
F(T)=\operatorname{per}\left(A_{T}\right)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} a_{i \sigma(i)}
$$

Tournament Alon - Proof

The numbers r_{i} are the outdegrees of the vertices of T. So, if exists one $r_{i}=0$ then $F(T)=C(T)=0$. Otherwise we can apply Brégman's Theorem that states:

Theorem (Brégman)

Let $A=\left(a_{i j}\right)$ be a $n \times n$ matrix with all $a_{i j} \in\{0,1\}$. Let r_{i} be the number of ones in the i-th row. We have that

$$
\operatorname{per}(A) \leq \prod_{i=1}^{n}\left(r_{i}!\right)^{1 / r_{i}}
$$

Can be proved that the maximum of the right hand side is achieved when all r_{i} are "equal", i.e., if n is odd $r_{i}=\binom{n}{2} / n=\frac{n-1}{2}$.

Asymptotically the Stirling's formula gives

Proposition

For every tournament T on n vertices

$$
C(T) \leq F(T) \leq(1+o(1)) \frac{\sqrt{\pi}}{\sqrt{2} e} n^{3 / 2} \frac{(n-1)!}{2^{n}}
$$

To complete the proof, given a tournament S on n vertices and let T be a random tournament obtained from S by adding a new vertex x and picking each oriented edge connecting x to all the other vertices randomly and independently.

For every fixed Hamiltonian path in S, the probability that it can be extended to an Hamiltonian cycle in T is exactly $1 / 4$.

Figure: $v_{1}, v_{2}, \ldots, v_{n}$ is an Hamiltonian path in S that is extended to a cycle in T
Thus the expected cycles in T are $\frac{1}{4} P(S)$, so, there exists a T for which $C(T) \geq \frac{1}{4} P(S)$.

Thanks to the previous Proposition

$$
C(T) \leq F(T) \leq(1+o(1)) \frac{\sqrt{\pi}}{\sqrt{2} e}(n+1)^{3 / 2} \frac{n!}{2^{n+1}},
$$

and we know that $P(S) \leq 4 C(T)$, then

$$
P(S) \leq O\left(n^{3 / 2} \frac{n!}{2^{n-1}}\right)
$$

This completes the proof of the theorem.

References

国 N. Alon and J.H. Spencer, "The Probabilistic Method Second Edition", 2000.

