Sauer-Shelah Lemma and its Application to Codes

Stefano Della Fiore

Università degli studi di Brescia

November 26, 2020

Stefano Della Fiore (UNIBS)

Sauer-Shelah Lemma and its Application

VC-Dimension

- 2 Formulation of the Lemma
- Overview of the Proof
- Asymptotic Formulation and Codes
- 5 An Interesting Application

Definition

In a binary classification setting with labels $\mathcal{Y} = \{-1, +1\}$, a set of *n* points $S = \{x_1, \dots, x_n\}$ is said to be **shattered** by a function class \mathcal{F} if

$$\forall y \in \mathcal{Y}^n, \exists f \in \mathcal{F} \text{ such that } f(x_i) = y_i \text{ for } i = 1, \dots, n.$$

The **VC-dimension** of a function class \mathcal{F} is the size of the largest set of points that can be shattered by \mathcal{F} .

Learning Theory - VC Dimension - 2

Here, we illustrate how the class of linear classifiers shatters a set of 3 points in \mathbb{R}^2 . No set of 4 points is shattered by a linear classifier in \mathbb{R}^2 then the VC-Dimension of these classifiers is equal to 3.

Density of a Family

Definition

The **density** of a family \mathcal{F} of subsets of a set S is the largest number d such that there exists a set A with |A| = d and $|\mathcal{F} \cap A| = |\{F \cap A : F \in \mathcal{F}\}| = 2^d$.

Figure: Example of a family with density equal to 2

Formulation

Lemma (Sauer-Shelah)

If the density of the family \mathcal{F} of subsets of a set S with |S| = m is equal to d then

$$|\mathcal{F}| \leq \sum_{i=0}^d \binom{m}{i}.$$

The proof is done by induction on m + d. In the inductive step we show the lemma holds for any m, d with m + d = k for some constant k assuming that it holds for all m, d with m + d < k

Proof by induction on m+d

Let $\Phi_d(m) := \sum_{i=0}^d \binom{m}{i}$. Note that $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$. If the density of the family \mathcal{F} of subsets of a set S with |S| = m is d then $|\mathcal{F}| \le \Phi_d(m)$.

Proof.

The proof is done by induction on m + d, the m = 0 and d = 0 cases are trivial. Consider m, d > 0 and fix an arbitrary element $p \in S$. Define

$$\mathcal{F}_{p} = \{F \in \mathcal{F} : p \notin F, \{p\} \cup F \in \mathcal{F}\}$$

Then,

$$|\mathcal{F}| = |\mathcal{F} \cap \{S - p\}| + |\mathcal{F}_p|.$$

Since the density of \mathcal{F}_p is at most d-1 we have by induction

$$|\mathcal{F}| \leq \Phi_d(m-1) + \Phi_{d-1}(m-1) = \Phi_d(m).$$

If \mathcal{F} is a family of subsets of a set |S| = n with n large enough has density $d_n \leq n/2$ then

$$|\mathcal{F}| \leq \sum_{i=0}^{d_n} \binom{n}{i} \leq 2^{n \cdot h(d_n/n) + o(n)}$$

rewritten in term of the "rate" of ${\mathcal F}$ we have

$$1/n\log |\mathcal{F}| \leq h(d_n/n) + o(1)$$

where $h(\alpha) = -\alpha \log \alpha - (1 - \alpha) \log(1 - \alpha)$ is the binary entropy function.

A family \mathcal{F} of subsets of $S = \{1, \ldots, n\}$ can be seen as a code C_n . ex. $F = \{2, 5, n-1\} \in \mathcal{F} \longleftrightarrow (0, 1, 0, 0, 1, 0, \ldots, 0, 1, 0) \in C_n$.

By Sauer-Shelah Lemma there is a set of coordinate D_n satisfying

$$\lim_{n\to\infty}|D_n|/n\geq h^{-1}(R),$$

where $R = \limsup_{n \to \infty} 1/n \log |C_n|$.

Applied to codes is even better - 2

The set of coordinates D_n has the property that

i.e., the union of all the projections in D_n are $2^{|D_n|}$.

Stefano Della Fiore (UNIBS)

10/15

Definition

We say that the binary code C_n with codewords of length n is **r-near-sunflower free** if for all r distinct codewords of C_n there exists a coordinate in which the numbers of 1's is between 2 and r - 2.

An upper bound on the rate of 4-near-sunflower-free codes

Let C_n be a 4-near-sunflower-free code with maximum cardinality. Sauer's lemma gives us a set of coordinates D_n with $\lim_{n\to\infty} |D_n|/n \ge h^{-1}(R)$ with all the $2^{|D_n|}$ projections.

Suppose that $|C_n| = 2^{nR} > 2^{n(1-h^{-1}(R))}$, by the pigeonhole principle and Sauer's Lemma we have

Let C_n be a 4-near-sunflower free with maximum cardinality then its cardinality must satisfy the following inequality

$$|C_n| \leq 2^{n(1-h^{-1}(R))}$$

that in terms of rates is

$$R \leq 1 - h^{-1}(R)$$

which restated is

$$R \leq h(1-R).$$

The largest value of R for which the previous inequality holds is \approx 0.773.

Theorem (Alon et al. 2020)

Let R be the rate of the largest 4-near-sunflower-free code. Then

 $R \leq 2/3 = 0.\overline{6}$

Problem

Try to mix the two ideas. Sauer's Lemma + Focal families.

- N. Sauer, "On the density of families of sets", JCT Ser. A, 13 pp. 145-147, *1972*.
- S. Shelah, "A combinatorial problem: Stability and order for models and theories in infinitary languages", Pacific J. Math. 41, pp. 247-261, *1972*.
- Vapnik, V. N and Chervonenkis, "On the uniform convergence of relative frequencies of events to their probabilities, Theory of Probability and its Applications 16", pp. 264-280, 1971.
- N. Alon, J. Korner, A. Monti, "String quartets in binary", Combinatorics Probability and Computing, *2002*.
- N. Alon, R. Holzman, "Near-sunflowers and focal families", ArXiv, https://arxiv.org/abs/2010.05992, *2020*.