Some results on Graceful graphs and Latin Transversals

Stefano Della Fiore
University of Brescia

April 19, 2021

(1) Graceful graphs
(2) Lopsided Lovàsz Local Lemma
(3) Latin Transversals

Graceful graphs

Definition (Graceful labeling)
A graceful labeling of a graph $G=(V, E)$ is a vertex labeling $f: V \rightarrow[0, m]$, where $m=|E|$, such that f is injective and the induced labeling on the edges $f: E \rightarrow[1, m]$ defined by $f(u, v)=|f(u)-f(v)|$ is also injective.

Definition (Graceful graph)
If the graph G admits a graceful labeling, we say that G is graceful.

Almost all graphs are not graceful

Theorem (Erdős unpublished, Grahame and Sloane (1980)) Almost all graphs are not graceful.

Proof.
First note that there are $\binom{\binom{n}{2}}{m}$ graphs with n vertices and m edges. Let f be a vertex labeling on n vertices with distinct number from $[0, m]$. There are $(m+1) m \cdots(m-n) \leq(m+1)^{n}$ such labelings.

Almost all graphs are not graceful

Let us count how many graphs there are for which f is a graceful labeling. Let p_{i} be the number of pairs of vertices $\{u, v\}$ such that $|f(u)-f(v)|=i$. Clearly, $\sum_{i} p_{i}=\binom{n}{2}$. A graph is graceful with the f-labeling if we take one edge from each class counted by p_{i}. Thus there are

$$
\prod_{i=1}^{m} p_{i} \leq\left(\frac{n(n-1)}{2 m}\right)^{m}
$$

graphs for which f is a graceful labeling. This product is maximized when all the p_{i} 's are equal.

Almost all graphs are not graceful

Therefore there are at most

$$
(m+1)^{n}\left(\frac{n(n-1)}{2 m}\right)^{m}
$$

graceful graphs. Finally, we show that the ratio

$$
\rho=\frac{(m+1)^{n}\left(\frac{n(n-1)}{2 m}\right)^{m}}{\left(\begin{array}{c}
\left(\begin{array}{c}
n \\
2 \\
m
\end{array}\right)
\end{array}\right)}
$$

tends to 0 as $n \rightarrow \infty$.

Almost all graphs are not graceful

Writing $m=(1 / 2-\mu)\binom{n}{2}$ with $\mu \in(-1 / 2,1 / 2)$. We have

$$
\rho<\frac{(m+1)^{n} \sqrt{8\binom{n}{2}\left(\frac{1}{2}-\mu\right)\left(\frac{1}{2}+\mu\right)}}{\left(\frac{1}{2}-\mu\right)^{m} 2^{\binom{n}{2} h\left(\frac{1}{2}-\mu\right)}}
$$

where $h(x)=-x \log _{2} x-(1-x) \log _{2}(1-x)$. Simplifying the denominator

$$
\rho<\frac{(m+1)^{n} \sqrt{8\binom{n}{2}\left(\frac{1}{2}-\mu\right)\left(\frac{1}{2}+\mu\right)}}{2^{-\binom{n}{2}\left(\frac{1}{2}+\mu\right) \log _{2}\left(\frac{1}{2}+\mu\right)}}
$$

taking the logarithm on both sides it is easy to see that the RHS tends to $-\infty$ as $n \rightarrow \infty$. Then $\rho \rightarrow 0$ as $n \rightarrow \infty$.

Lopsided Lovàsz Local Lemma

Lemma (Lopsided Local Lemma - Symmetric case)

Let $A_{1}, A_{2}, \ldots, A_{n}$ be events in an arbitrary probability space. A graph $G=(V, E)$ on the set of vertices $V=\{1,2, \ldots, n\}$ is called lopsidedependency graph for the A_{i} 's if

$$
\operatorname{Pr}\left(A_{i} \mid \cap_{j \in S} \bar{A}_{j}\right) \leq \operatorname{Pr}\left(A_{i}\right)
$$

for all i, S with $i \notin S$ and no $j \in S$ adjacent to i in G. Suppose that all events have probability at most p and that each vertex in G has degree at most d. If

$$
e p(d+1) \leq 1
$$

then $\operatorname{Pr}\left(\cap_{i=1}^{n} \bar{A}_{i}\right)>0$.

Latin Transversals

Definition (Latin Transversal)

Let $A=\left(a_{i j}\right)$ be a $n \times n$ matrix with integer entries. A permutation π is called a Latin transversal if the entries $a_{i \pi(i)}$ for $i=1, \ldots, n$ are all different.
Example

$$
A=\left(\begin{array}{llll}
1 & 2 & 3 & \mathbf{4} \\
\mathbf{3} & 1 & 4 & 5 \\
2 & 5 & \mathbf{1} & 2 \\
4 & \mathbf{2} & 3 & 5
\end{array}\right), \quad \pi=(4,1,3,2)
$$

Theorem (Existence of Latin Transversals)

Let $A=\left(a_{i j}\right)$ be a $n \times n$ matrix with integer entries. Suppose $k \leq \frac{n-1}{4 e}$ and suppose no integer appears in more than k entries of A. Then A has a Latin Transversal.

Latin Transversals

Proof.

Let π be a random permutation of $\{1,2, \ldots, n\}$ chosing with uniform distribution among all n ! permutations. Denote by T the set of all $\left(i, j, i^{\prime}, j^{\prime}\right)$ such that $i<i^{\prime}, j \neq j^{\prime}$ and $a_{i j}=a_{i^{\prime} j^{\prime}}$. For each $\left(i, j, i^{\prime}, j^{\prime}\right) \in T$ let $A_{i j i^{\prime} j^{\prime}}$ be the event that $\pi(i)=j$, $\pi\left(i^{\prime}\right)=j^{\prime}$. Clearly $\operatorname{Pr}\left(A_{i j i^{\prime} j^{\prime}}\right)=\frac{1}{n(n-1)}$.

Latin Transversals

Proof.
Let π be a random permutation of $\{1,2, \ldots, n\}$ chosing with uniform distribution among all n ! permutations. Denote by T the set of all $\left(i, j, i^{\prime}, j^{\prime}\right)$ such that $i<i^{\prime}, j \neq j^{\prime}$ and $a_{i j}=a_{i^{\prime} j^{\prime}}$. For each $\left(i, j, i^{\prime}, j^{\prime}\right) \in T$ let $A_{i j i^{\prime} j^{\prime}}$ be the event that $\pi(i)=j$, $\pi\left(i^{\prime}\right)=j^{\prime}$. Clearly $\operatorname{Pr}\left(A_{i j i^{\prime} j^{\prime}}\right)=\frac{1}{n(n-1)}$.

If none of these events hold with positive probability then a Latin Transversal exists.

Latin Transversals

Let G be a symmetric graph on the vertex set T and $\left(i, j, i^{\prime}, j^{\prime}\right)$ is adjacent to $\left(p, q, p^{\prime}, q^{\prime}\right)$ iff $\left\{i, i^{\prime}\right\} \cap\left\{p, p^{\prime}\right\} \neq \emptyset$ or $\left\{j, j^{\prime}\right\} \cap\left\{q, q^{\prime}\right\} \neq \emptyset$. The maximum degree of G is less than $4 n k$. In fact there are at most $4 n$ choices of (s, t) with either $s \in\left\{i, i^{\prime}\right\}$ or $t \in\left\{j, j^{\prime}\right\}$ and for each of these choices there are less than k choices for $\left(s^{\prime}, t^{\prime}\right) \neq(s, t)$ and $a_{s t}=a_{s^{\prime} t^{\prime}}$. By hypothesis we have $e \cdot 4 n k \cdot \frac{1}{n(n-1)} \leq 1$ and so, by the Lopsided Local Lemma we only need to prove that

$$
\operatorname{Pr}\left(A_{i j i^{\prime} j^{\prime}} \mid \cap_{S} \bar{A}_{p q p^{\prime} q^{\prime}}\right) \leq \frac{1}{n(n-1)}
$$

for any $\left(i, j, i^{\prime}, j^{\prime}\right) \in T$ and any set S of members of T nonadjacent in G to $\left(i, j, i^{\prime}, j^{\prime}\right)$.

Latin Transversals

By symmetry, assume $i=j=1, i^{\prime}=j^{\prime}=2$ and hence none of the p 's or q 's are equal to 1 or 2 . We say that π is good if it satisfies $\cap_{S} \bar{A}_{p q p^{\prime} q^{\prime}}$. Let $S_{k l}$ denote the set of all good permutations π such that $\pi(1)=k$ and $\pi(2)=l$.

Claim. $\left|S_{12}\right| \leq\left|S_{k l}\right|$ for all $k \neq l$.
Suppose $k, l>2$. For each $\pi \in S_{12}$, where $\pi(x)=k$ and $\pi(y)=l$, define π^{*} such that $\pi^{*}(1)=k, \pi^{*}(2)=l, \pi^{*}(x)=1$, $\pi^{*}(y)=2$ and $\pi^{*}(t)=\pi(t)$ for all $t \neq 1,2, x, y$. Thus $\pi^{*} \in S_{k l}$.

Latin Transversals

By symmetry, assume $i=j=1, i^{\prime}=j^{\prime}=2$ and hence none of the p 's or q 's are equal to 1 or 2 . We say that π is good if it satisfies $\cap_{S} \bar{A}_{p q p^{\prime} q^{\prime}}$. Let $S_{k l}$ denote the set of all good permutations π such that $\pi(1)=k$ and $\pi(2)=l$.
Claim. $\left|S_{12}\right| \leq\left|S_{k l}\right|$ for all $k \neq l$.
Suppose $k, l>2$. For each $\pi \in S_{12}$, where $\pi(x)=k$ and $\pi(y)=l$, define π^{*} such that $\pi^{*}(1)=k, \pi^{*}(2)=l, \pi^{*}(x)=1$, $\pi^{*}(y)=2$ and $\pi^{*}(t)=\pi(t)$ for all $t \neq 1,2, x, y$. Thus $\pi^{*} \in S_{k l}$.

The mapping $\pi \in S_{12} \rightarrow \pi^{*} \in S_{k l}$ is injective.
Then $\left|S_{12}\right| \leq\left|S_{k l}\right|$.

Latin Transversals

It follows that

$$
\operatorname{Pr}\left(A_{1122} \mid \cap_{S} \bar{A}_{p q p^{\prime} q^{\prime}}\right)=\frac{\left|S_{12}\right|}{\sum_{k \neq l}\left|S_{k l}\right|}
$$

Since $\left|S_{k l}\right| \geq\left|S_{12}\right|$ for all $k \neq l$ then

$$
\operatorname{Pr}\left(A_{1122} \mid \cap_{S} \bar{A}_{p q p^{\prime} q^{\prime}}\right) \leq \frac{1}{n(n-1)}
$$

Therefore, by symmetry and applying the Lopsided Local Lemma the Theorem follows.

References

R R. L. Graham, N. J. A. Sloane, "On Additive Bases and Harmonious Graphs", SIAM JADM, 1980.

圊 P. Erdős, J. Spencer, "Lopsided Lovász Local Lemma and Latin transversals", Discrete Applied Mathematics, 1991.

目 N. Alon, J. Spencer, "The Probabilistic Method 2nd Edition", JOHN WILEY \& SONS, INC. 2000.

