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Graceful graphs

Definition (Graceful labeling)

A graceful labeling of a graph G = (V,E) is a vertex labeling
f : V → [0,m], where m = |E|, such that f is injective and the
induced labeling on the edges f : E → [1,m] defined by
f(u, v) = |f(u)− f(v)| is also injective.

Definition (Graceful graph)

If the graph G admits a graceful labeling, we say that G is
graceful.



Almost all graphs are not graceful

Theorem (Erdős unpublished, Grahame and Sloane (1980))

Almost all graphs are not graceful.

Proof.
First note that there are

((n2)
m

)
graphs with n vertices and m

edges. Let f be a vertex labeling on n vertices with distinct
number from [0,m]. There are (m+ 1)m · · · (m− n) ≤ (m+ 1)n

such labelings.



Almost all graphs are not graceful

Let us count how many graphs there are for which f is a
graceful labeling. Let pi be the number of pairs of vertices
{u, v} such that |f(u)− f(v)| = i. Clearly,

∑
i pi =

(
n
2

)
. A

graph is graceful with the f -labeling if we take one edge from
each class counted by pi. Thus there are

m∏
i=1

pi ≤
(
n(n− 1)

2m

)m
graphs for which f is a graceful labeling. This product is
maximized when all the pi’s are equal.



Almost all graphs are not graceful

Therefore there are at most

(m+ 1)n
(
n(n− 1)

2m

)m
graceful graphs. Finally, we show that the ratio

ρ =
(m+ 1)n

(
n(n−1)

2m

)m
((n2)
m

)
tends to 0 as n→∞.



Almost all graphs are not graceful

Writing m = (1/2− µ)
(
n
2

)
with µ ∈ (−1/2, 1/2). We have

ρ <
(m+ 1)n

√
8
(
n
2

)
(12 − µ)(12 + µ)

(12 − µ)m2(n2)h(
1
2
−µ)

where h(x) = −x log2 x− (1− x) log2(1− x). Simplifying the
denominator

ρ <
(m+ 1)n

√
8
(
n
2

)
(12 − µ)(12 + µ)

2−(n2)(
1
2
+µ) log2(

1
2
+µ)

taking the logarithm on both sides it is easy to see that the
RHS tends to −∞ as n→∞. Then ρ→ 0 as n→∞.



Lopsided Lovàsz Local Lemma

Lemma (Lopsided Local Lemma - Symmetric case)

Let A1, A2, . . . , An be events in an arbitrary probability space. A
graph G = (V,E) on the set of vertices V = {1, 2, . . . , n} is
called lopsidedependency graph for the Ai’s if

Pr(Ai| ∩j∈S Aj) ≤ Pr(Ai)

for all i, S with i 6∈ S and no j ∈ S adjacent to i in G.
Suppose that all events have probability at most p and that each
vertex in G has degree at most d. If

ep(d+ 1) ≤ 1

then Pr(∩ni=1Ai) > 0.



Latin Transversals

Definition (Latin Transversal)

Let A = (aij) be a n× n matrix with integer entries. A
permutation π is called a Latin transversal if the entries aiπ(i)
for i = 1, . . . , n are all different.

Example

A =


1 2 3 4
3 1 4 5
2 5 1 2
4 2 3 5

 , π = (4, 1, 3, 2)

Theorem (Existence of Latin Transversals)

Let A = (aij) be a n× n matrix with integer entries. Suppose
k ≤ n−1

4e and suppose no integer appears in more than k entries
of A. Then A has a Latin Transversal.



Latin Transversals

Proof.
Let π be a random permutation of {1, 2, . . . , n} chosing with
uniform distribution among all n! permutations. Denote by T
the set of all (i, j, i′, j′) such that i < i′, j 6= j′ and aij = ai′j′ .
For each (i, j, i′, j′) ∈ T let Aiji′j′ be the event that π(i) = j,
π(i′) = j′. Clearly Pr(Aiji′j′) = 1

n(n−1) .

If none of these events hold with positive probability then a
Latin Transversal exists.
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Latin Transversals

Let G be a symmetric graph on the vertex set T and (i, j, i′, j′)
is adjacent to (p, q, p′, q′) iff {i, i′} ∩ {p, p′} 6= ∅ or
{j, j′} ∩ {q, q′} 6= ∅. The maximum degree of G is less than 4nk.
In fact there are at most 4n choices of (s, t) with either
s ∈ {i, i′} or t ∈ {j, j′} and for each of these choices there are
less than k choices for (s′, t′) 6= (s, t) and ast = as′t′ . By
hypothesis we have e · 4nk · 1

n(n−1) ≤ 1 and so, by the Lopsided
Local Lemma we only need to prove that

Pr(Aiji′j′ | ∩S Apqp′q′) ≤
1

n(n− 1)

for any (i, j, i′, j′) ∈ T and any set S of members of T
nonadjacent in G to (i, j, i′, j′).



Latin Transversals

By symmetry, assume i = j = 1, i′ = j′ = 2 and hence none of
the p’s or q’s are equal to 1 or 2. We say that π is good if it
satisfies ∩SApqp′q′ . Let Skl denote the set of all good
permutations π such that π(1) = k and π(2) = l.

Claim. |S12| ≤ |Skl| for all k 6= l.
Suppose k, l > 2. For each π ∈ S12, where π(x) = k and
π(y) = l, define π∗ such that π∗(1) = k, π∗(2) = l, π∗(x) = 1,
π∗(y) = 2 and π∗(t) = π(t) for all t 6= 1, 2, x, y. Thus π∗ ∈ Skl.

The mapping π ∈ S12 → π∗ ∈ Skl is injective.
Then |S12| ≤ |Skl|.
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Latin Transversals

It follows that

Pr(A1122| ∩S Apqp′q′) =
|S12|∑
k 6=l |Skl|

.

Since |Skl| ≥ |S12| for all k 6= l then

Pr(A1122| ∩S Apqp′q′) ≤
1

n(n− 1)
.

Therefore, by symmetry and applying the Lopsided Local
Lemma the Theorem follows.
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