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1 Introduction

Definition 1.1. An information source X is an infinite sequence of random
variables X1, X2, X3, ... taking values in a finite alphabet X . The source
X is said to be memoryless if X1, X2, ... are independent and identically
distributed (i.i.d.). So we say that the source has memory if the random
variables X1, ..., Xn are not independent.

Definition 1.2. A variable-length code for a random variable X is a map
from the alphabet X to D*, where D* is the set of finite length sequences of
symbols from a D-ary alphabet. For each possible symbol x ∈ X the codeword
associated to x is C(x) and with l(x) we identify its length.

Definition 1.3. A code is said to be non-singular if:

∀xi, xj ∈ X , xi 6= xj implies C(xi) 6= C(xj). (1)

Definition 1.4. The extension C* of a code C is the mapping from finite
length sequences of X to finite length sequences of D defined by:

C(x1x2...xn) = C(x1)C(x2)...C(xn) (2)

where the strings represent the concatenation of different source symbols and
coding symbols.

Definition 1.5. In the classic sense a code C is said uniquely decodable if
its extension is non-singular.

Definition (1.5) makes the assumption that all the combinations of sym-
bols can be produced by the source with positive probability. It means that if
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we represent the source with a first-order Markov chain the transition prob-
ability matrix P has all its entries positive meaning that all the transitions
between different states are always possible. When we are in this configu-
ration (when all combinations of symbols are possible) then we call these
sources: unconstrained sources; at the other end if some combinations
are impossible to obtain we call these sources: constrained sources.

Definition 1.6. Let X be an information source with alphabet X . A code
C is said to be uniquely decodable for the source X if no two different finite
sequences of source symbols producible by X have the same codeword.

With this definition (1.6) we have a complete coverage of all the possible
sequences of symbols outcome from a source. All the uniquely decodable
sources in the “classic sense” and also codes for constrained sources are
incorporated in the new definition.

Definition 1.7. A code is called a prefix-code (prefix-free) if no codeword
is a prefix of any other codeword.

Under prefix-free conditions the code is said to be instantaneous: this
means that the decoder can decode the received messages in linear time.
Given a sequence of code symbols the decoder can identify a unique sequence
of the received symbols in order to reconstruct the message correctly.

Theorem 1.8 (Kraft Inequality). Let li, i = 1, ..., n, be the lengths of the
codewords of a prefix code and let D = |D| be the size of the code alphabet
D. It states that

n∑
i=1

D−li ≤ 1. (3)

Conversely, if a set of integers li, i = 1, ..., n satisfy the Kraft inequality then
a prefix-free code can be constructed with those codeword lengths.

Theorem 1.9. It follows from the Kraft inequality that if a prefix code
is used for encoding a random variable X, then the expected length of the
codeword generated is always greater or equal to the entropy of X.

E[l(X)] ≥ H(X). (4)

Corollary 1.10. For every prefix code the expected length of the code for n
symbols of a source X satisfies:

E[l(X1, X2, ..., Xn)] ≥ H(X1, X2, ..., Xn) (5)

This corollary on prefix-code is a strong result with respect to the asymp-
totic lower bound given by Shannon (infinite number of symbols) because it
is applied to finite sequences of symbols.
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In the previous Theorem we consider prefix-codes or non-constrained
uniquely decodable codes. For these codes McMillan [4] proved that both
uniquely decodable and prefix-free codes satisfy the Kraft inequality, mean-
ing that there is no advantage in using a uniquely decodable code instead
of a prefix-free because both have the same lower bound on the expected
length seen in Corollary 1.10. Using a uniquely decodable code only makes
the decoder more complex. As we said before there are some sources that
do not produce some of the possible sequences of symbols; in these cases
the Kraft inequality does not hold anymore [2] and this brought to a new
theorem (Theorem 2.1).

2 Constrained Markovian Source

Theorem 2.1. (Dalai [3]) There exists at least one source X = (X1, X2, ...,
Xn) and a uniquely decodable code for X such that, for every n ≥ 1:

E[l(X1, X2, ..., Xn)] < H(X1, X2, ..., Xn) (6)

Proof. Let us see an example with a first order Markovian source, con-
sidering a source X generating symbols X1, X2, ... where each Xi ∈ X =
{A,B,C,D}. The sequence of generating symbols is based on the following
transition probability graph:

Figure 1: Graph related to a Markov source with some impossible transitions.

The associated transition probability matrix is

P =


1/2 0 1/2 0
0 1/2 0 1/2

1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4

 . (7)

It can be easily shown that the unique stationary distribution is the uniform
distribution over the set of source symbols, that is π = (1/4, 1/4, 1/4, 1/4).
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If we set the distribution PX1(x1) = π then the source is stationary. The
Markov source is also irreducible and aperiodic and so the source is ergodic.

We consider a classic encoding algorithm (Huffman) that generates the
optimal code in the classic sense for a sequence of symbols. In this particular
case all the entries of P are powers of the coding dictionary cardinality |D| =
2 and this implies that the H(Xn

1 ) can be reached with a prefix-free code.
The Huffman code is constructed by encoding the first symbol independently
and all the successive symbols are encoded using the transition probability
matrix P creating different Huffman codes for all the P-rows.

Example 2.2. An Huffman code for the stationary Markov chain based on
the transition probability matrix P in eq. (7) can be constructed as follows

PX1(x1) = (1/4, 1/4, 1/4, 1/4),

C1 = (A→ 00, B → 01, C → 10, D → 11),

where C1 is the Huffman code for the first symbol. Then for all the possible
state-transitions an Huffman code is constructed:

PX2|X1
(x2|x1 = A) = (1/2, 0, 1/2, 0),

CA = (A→ 0,−, C → 1,−),

where CA is the Huffman code related to transitions which start from symbol
A. With the same procedure we carry out

CB = (−, B → 0,−, D → 1),

CC = (A→ 00, B → 01, C → 10, D → 11),

CD = (A→ 00, B → 01, C → 10, D → 11),

which are the codes for the remaining state-transitions.

The expected length of the Huffman code for the first n symbols reaches
the entropy of the sequence which can be expressed as

H(Xn
1 ) = H(X1) +

n∑
i=2

H(Xi|Xi−1
1 )

= H(X1) + (n− 1)H(X2|X1)

= 2 +
3

2
(n− 1),

for all n ≥ 1. This result is achieved using the chain rule of the entropy and
the fact that the source is stationary.

As we said before since the entries of the P matrix are power of 2 and
PX1(x1) = (1/4, 1/4, 1/4, 1/4), then the expected length of the codeword
equals the entropy of the sequence:

E[l(Xn
1 )] = H(Xn

1 ) = 2 +
3

2
(n− 1). (8)
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In [2], a different code is proposed: a fixed map from X → D* such that
A→ 0, B → 1, C → 01, D → 10. This code is not uniquely decodable in the
classic sense because the concatenation BA produces 01 that is also produced
by symbol D. The advantage of this coding scheme is that the impossible
transitions are exploited. In fact, the transition A → B and vice versa
are not allowed by the Markovian source, so this encoding scheme does not
produce ambiguity and the source sequence can be correctly reconstructed
at the decoder (making it uniquely decodable code in this sense).

Evaluating the expected length of the code, we see that:

E[l(Xn
1 )] =

n∑
i=1

E[l(Xi)] =
3

2
n. (9)

Thinking about the asymptotic equipartition (AEP) for ergodic sources
(McMillan) shown in Gallager’s book [1], intuitively, the minimum expected
length per symbol for both constrained and unconstrained Makovian ergodic
sources is the entropy rate of the source. So a natural conjecture arises.

Conjecture 2.3. Given a stationary Markovian source X = X1, X2, . . . ,
Xn, then for every uniquely decodable code (that works with concatenation)
for the source X, we have that

E[l(Xn
1 )] ≥ nH(X ) for all n ≥ 1,

where H(X ) = limn→∞H(X1, X2, . . . , Xn)/n.

With the fix-mapped code the gain obtained with respect to the Huffman
code is only at the first symbol because H(X2|X1) = 3/2 and so, there is no
gain when we have state transitions. The Huffman code is more expensive in
terms of computational complexity because the decoder must have stored all
the codes for each possible transition, while for the custom-code the decoder
needs to know the impossible transitions but the matching between encoding
bits and symbols is faster.

Proving or disproving the Conjecture 2.3 for all stationary markovian
sources is not an easy task, so we restrict our attention to the following
problem.

Problem 2.4. Given the stationary markovian source X = X1, . . . , Xn,
described by the transition probability matrix P given in eq. (7), prove or
disprove there exists a map C : X ∗ → {0, 1}∗ from sequences of letters (of
any length), where X = {A,B,C,D}, to sequences of bits (of any length)
such that:

1. C is invertible;
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2. E[l(C(X1, X2, . . . , Xn))] ≤ 3/2n for all n ≥ 1;

3. E[l(C(X1, X2, . . . , Xn))] < 3/2n for at least one n ≥ 1.

Problem 2.4 raises the question of weather it exists a code that performs
better, in terms of expected length, than the one given in Theorem 2.1.
We believe that such code does not exist and to corroborate this claim we
show that using a greedy code constructed in the next paragraph we cannot
satisfy all the hypotheses in Problem 2.4.

We construct iteratively (in a greedy way) the code for the stationary
markovian source described by P in eq. (7) as follows.

• For n = 1, using the distribution of the first symbol PX1(x1) =
(1/4, 1/4, 1/4, 1/4) we encode the source output sequences of length
1, that are, {A,B,C,D}. We are constrained to use 2 codewords of 1
bit and 2 codewords of 2 bits. Then

E[l(C(X1))] = 3/2.

• For n = 2, we have the following sequences {AA,AC,BB,BD,CA,
CB, CC,CD,DA, DB,DC,DD} with PX1,X2(x1, x2) = (18 ,

1
8 ,

1
8 ,

1
8 ,

1
16 ,

1
16 ,

1
16 ,

1
16 ,

1
16 ,

1
16 ,

1
16 ,

1
16). In this case we assign the remaining 2 code-

words of 2 bits to the sequences {AA,AC}, then all the 8 codewords
of 3 bits to {BB,BD,CA,CB,CC, CD,DA,DB} and finally 2 code-
words of 4 bits to {DC,DD}. Then

E[l(C(X1, X2))] = 23/8 < 3/2 · 2 = 3.

• · · ·

So, iteratively, at step n we assign the shortest unused (in the first n−1 steps)
sequences of bits to the source output sequences following a descending
probability order. It can be easily shown that at each step k (k ≥ 1) we
have to encode 4 · 3k−1 sequences produced by the markovian source under
consideration. Then, after n steps we have encoded

n∑
k=1

4 · 3k−1 = 2 · (3n − 1)

sequences. This implies that at each step n we are using all the sequences
of bits of length smaller than blog2(3

n − 1)c − 1 to encode our source out-
put sequences. Then, for n large enough it can be easily verified that the
expected length of the iterative code increases as n log2 3. Therefore, there
exists an n for which the expected length of the code is strictly greater than
3/2n since log2 3 > 3/2. So, the second hypothesis in Problem 2.4 is not
satisfied.
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