Variations on the Erdős Distinct-Sums Problem

Stefano Della Fiore
Joint work with Simone Costa and Marco Dalai

Università degli studi di Brescia

November 25, 2021

(1) Information-theoretic Interpretation
(2) Formulation of the original problem by Erdős
(3) Some known results from literature
4) Variations on the original problem
(5) Our results

Information Theory Interpretation

Signaling over a multiple access channel. Let $\left\{a_{1}, \ldots, a_{n}\right\}$ be a set, where $a_{i} \in \mathbb{Z}^{k}$ for some $k \geq 1$, such that the sums of up to λn elements of the set be distinct with $0<\lambda<1$. We have n trasmitters.

Each one can send a signal of amplitude a_{i} to the base station saying that it wants to start a communication session.

Formulation of the original problem

Let $\left\{a_{1}, \ldots, a_{n}\right\}$ be a set of positive integers with $a_{1}<\ldots<a_{n}$ such that all 2^{n} subset sums are distinct.

Conjecture.
A famous conjecture by Erdős states that $a_{n}>c \cdot 2^{n}$ for some constant c.

Theorem.
The best results known to date are of the form $a_{n}>c \cdot 2^{n} / \sqrt{n}$ for some constant c.

Improving the factor \sqrt{n} is a very hard task and so only the constant c has been improved in the past 65 years.

Known bounds from literature

Lower bounds on a_{n}

- Trivial one $\rightarrow a_{n} \geq \frac{1}{n} 2^{n}$
- Erdős and $\operatorname{Moser}(1955) \rightarrow a_{n} \geq \frac{1}{4} \cdot \frac{2^{n}}{\sqrt{n}}$
- Alon and Spencer $(1981) \rightarrow a_{n} \geq(1+o(1)) \frac{2}{3 \sqrt{3}} \cdot \frac{2^{n}}{\sqrt{n}}$
- Elkies (1986) $\rightarrow a_{n} \geq(1+o(1)) \frac{1}{\sqrt{2 \pi}} \cdot \frac{2^{n}}{\sqrt{n}}$
- Guy (1981) $\rightarrow a_{n} \geq(1+o(1)) \frac{1}{\sqrt{3}} \cdot \frac{2^{n}}{\sqrt{n}}$
- Dubroff, Fox and $\mathrm{Xu}(2020) \rightarrow a_{n} \geq(1+o(1)) \sqrt{\frac{2}{\pi}} \cdot \frac{2^{n}}{\sqrt{n}}$

Upper bounds on a_{n}

- Trivial one $\rightarrow a_{n} \leq 2^{n-1}$ (take each $a_{i}=2^{i-1}$)
- Bohman (1998) $\rightarrow a_{n} \leq 0.22002 \cdot 2^{n}$

Variations on the original problem

First variation.

The distinct-sums condition is weakened by only requiring that the sums of up to λn elements of the set be distinct with $0<\lambda<1$.

Second variation.
The elements $a_{i} \in \mathbb{Z}^{k}$ for some $k \geq 1$.

More formally...

Problem.
Let $\mathcal{F}_{\lambda, n}$ be the family of all subsets of $\{1, \ldots, n\}$ whose size is smaller than or equal to λn. We are interested in the minimum M such that there exists a sequence $\Sigma=\left(a_{1}, \ldots, a_{n}\right)$ in \mathbb{Z}^{k}, $a_{i} \in[0, M]^{k} \forall i$, such that for all distinct $A_{1}, A_{2} \in \mathcal{F}_{\lambda, n}$, $S\left(A_{1}\right) \neq S\left(A_{2}\right)$, where

$$
S(A)=\sum_{i \in A} a_{i}
$$

Remark.
For $\lambda=1$ and $k=1$ we obtain the same problem as the original one.

Trivial Lower Bounds on M

Proposition.

Let $\Sigma=\left(a_{1}, \ldots, a_{n}\right)$ be an $\mathcal{F}_{\lambda, n}$-sum distinct sequence in \mathbb{Z}^{k} that is M-bounded. Then

$$
M \geq(1+o(1)) \cdot \begin{cases}\frac{1}{\lceil\lambda n\rceil \sqrt[k]{2 \pi n \lambda(1-\lambda)}} 2^{n h(\lambda) / k} & \text { if } \lambda<1 / 2 \\ \frac{1}{\lceil\lambda n\rceil} \cdot 2^{(n-1) / k} & \text { if } 1 / 2 \leq \lambda<1 \\ \frac{1}{n} \cdot 2^{n / k} & \text { if } \lambda=1 ;\end{cases}
$$

Proof.
Since the maximum possible sum is at most $\lceil\lambda n\rceil M$ in each component, by the pigeonhole principle, we have that

$$
M^{k} \geq \frac{1}{\lceil\lambda n\rceil^{k}} \sum_{i=0}^{\lceil\lambda n\rceil}\binom{n}{i}
$$

Harper Isoperimetric Inequality

Following the idea of Dubroff, Fox and Xu the previous bounds for $k=1$ and $\lambda \geq 1 / 2$ can be improved as follow

Theorem
Let $\Sigma=\left(a_{1}, \ldots, a_{n}\right)$ be an $\mathcal{F}_{\lambda, n}$-sum distinct sequence in \mathbb{Z} that is M-bounded. Then

$$
M \geq(1+o(1)) \cdot \begin{cases}\frac{1}{\sqrt{2 \pi n}} \cdot 2^{n} & \text { if } \lambda=1 / 2 \\ \sqrt{\frac{2}{\pi n}} \cdot 2^{n} & \text { if } \lambda \in] 1 / 2,1]\end{cases}
$$

Lower bound - Variance method for $k>1$

Using the variance method, it is possible, to improve the previous bounds for $k>1$ and $\lambda \geq 1 / 2$.

Theorem
Let $\lambda \geq 1 / 2$ and let $\Sigma=\left(a_{1}, \ldots, a_{n}\right)$ be an $\mathcal{F}_{\lambda, n}$-sum distinct sequence in \mathbb{Z}^{k} that is M-bounded. Then
$M \geq(1+o(1)) \cdot \begin{cases}\sqrt{\frac{4}{\pi n(k+2)}} \cdot \Gamma(k / 2+1)^{1 / k} \cdot 2^{n / k} & \text { if } \lambda=1 ; \\ \sqrt{\frac{4}{\pi n(k+2)}} \cdot \Gamma(k / 2+1)^{1 / k} \cdot 2^{(n-1) / k} & \text { if } 1 / 2 \leq \lambda<1 ;\end{cases}$
where Γ is the gamma function.

Variance method for $k>1$ and $1 / 2 \leq \lambda \leq 1$

Sketch of the proof.

Consider a random variable $X=\sum_{i=1}^{n} \epsilon_{i} a_{i}$ where the random vectors $\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}\right)$ are uniformly distributed over the set $\mathcal{F}_{\lambda, n}$. It can be proved that $\mathbb{E}\left[\epsilon_{i} \epsilon_{j}\right] \leq 0$ for each $i \neq j$. Hence $\sigma^{2} \leq 1 / 4 \sum_{i=1}^{n}\left|a_{i}\right|^{2} \leq 1 / 4 n k M^{2}$.

The variance can be lower bounded by placing each sum within a ball of the smallest possible radius R centered at $\mu:=\mathbb{E}[X]$.

$$
\begin{aligned}
\sigma^{2} & \geq \frac{(1+o(1))}{\left|\mathcal{F}_{\lambda, n}\right|} \int_{0}^{R} S_{k-1}(\rho) \rho^{2} d \rho \\
& \geq \frac{(1+o(1))}{\left|\mathcal{F}_{\lambda, n}\right|} \frac{k \pi^{k / 2}}{\Gamma(k / 2+1)} \frac{R^{k+2}}{k+2} .
\end{aligned}
$$

Polynomial method

Using the polynomial method (Alon's combinatorial nullstellensatz) we get the following theorem.

Theorem
For any $\lambda<1 / 3$, there exists a sequence $\Sigma=\left(a_{1}, \ldots, a_{n}\right)$ that is M-bounded positive integers and $\mathcal{F}_{\lambda, n}$-sum distinct with

$$
M \geq \lambda^{3} n^{2} 2^{f(\lambda) n}
$$

where $f(\lambda)=-2 \lambda \log _{2} \lambda-(1-2 \lambda) \log _{2}(1-2 \lambda)$.
Remark.
The previous bound is non-trivial for $\lambda<3 / 25$.

Upper bound - Probabilistic method

Using the probabilistic method we get an improvement on the trivial bound (i.e., $c \cdot 2^{n / k}$) for $k>1$ and $\lambda<3 / 25$.

Theorem
Let

$$
C_{\lambda, n}=\sqrt[k]{\frac{\lambda^{2} n^{2}}{2 \tau_{\lambda}} 2^{f(\lambda) \tau_{\lambda}}} \text { and } \tau_{\lambda}=\left\lceil\frac{1}{\log _{e} 2 \cdot f(\lambda)}\right\rceil
$$

where $f(\lambda)=-2 \lambda \log _{2} \lambda-(1-2 \lambda) \log _{2}(1-2 \lambda)$.
Then there exists a sequence $\Sigma=\left(a_{1}, \ldots, a_{n}\right)$ of
$\left(C_{\lambda, n} \cdot 2^{f(\lambda) n / k}\right)$-bounded elements of \mathbb{Z}^{k} that is $\mathcal{F}_{\lambda, n}$-sum distinct.

Improvements for $k=1$ and $\lambda \in] 3 / 25,1 / 4]$

Using the Bohman construction it can be shown that if $\lambda<1 / 4$, if n is big enough, there exists a sequence $\Sigma=\left(a_{1}, \ldots, a_{n}\right)$ of M-bounded integers that is $\mathcal{F}_{\lambda, n}$-sum distinct with

$$
M=\frac{0,22096}{2} \cdot 2^{n},
$$

while for $\lambda<1 / 8$ we get

$$
M=\frac{0,22096}{4} \cdot 2^{n}
$$

Remark.
For $\lambda<1 / 4$ we can insert an additional a_{i} to the sequence found by Bohman while for $\lambda<1 / 8$ two elements can be added without violating the sum-distinct property.

Overall results

Figure: Sub-exponential factor of the lower bounds for $1 / 2 \leq \lambda \leq 1$.

(a) $k=1$

(b) $k>1$

Figure: Exponent of the upper bounds for $k=1$ and for $k>1$.

