On Sequences in Cyclic Groups with Distinct Partial Sums

Stefano Della Fiore

Università degli studi di Brescia
Dipartimento di Ingegneria dell'Informazione
Joint work with S. Costa, M. Ollis, S. Z. Rovner-Frydman
Combinatorics, Mantova, 2022

Some notation

Let S be a subset of size k of a finite abelian group G of order n. Let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ be an ordering of the elements of S and define its partial sums by $\mathbf{y}=\left(y_{0}, y_{1}, y_{2}, \ldots, y_{k}\right)$ where

$$
y_{0}=0, y_{1}=x_{1}, y_{2}=x_{1}+x_{2}, \ldots, y_{k}=x_{1}+x_{2}+\ldots+x_{k}
$$

Some notation

Let S be a subset of size k of a finite abelian group G of order n. Let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ be an ordering of the elements of S and define its partial sums by $\mathbf{y}=\left(y_{0}, y_{1}, y_{2}, \ldots, y_{k}\right)$ where

$$
y_{0}=0, y_{1}=x_{1}, y_{2}=x_{1}+x_{2}, \ldots, y_{k}=x_{1}+x_{2}+\ldots+x_{k}
$$

Call an ordering of S with distinct partial sums, with the only exception that $\sum S$ can be equal to 0 , a sequencing.

If S admits a sequencing then it is called sequenceable.

Some notation

Let S be a subset of size k of a finite abelian group G of order n. Let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ be an ordering of the elements of S and define its partial sums by $\mathbf{y}=\left(y_{0}, y_{1}, y_{2}, \ldots, y_{k}\right)$ where

$$
y_{0}=0, y_{1}=x_{1}, y_{2}=x_{1}+x_{2}, \ldots, y_{k}=x_{1}+x_{2}+\ldots+x_{k}
$$

Call an ordering of S with distinct partial sums, with the only exception that $\sum S$ can be equal to 0 , a sequencing.
If S admits a sequencing then it is called sequenceable.
Conjecture
Let G be a finite abelian group. Then, every subset $S \subseteq G \backslash\{0\}$ is sequenceable.

Some motivation

This problem has connections to:

- Heffter arrays
- Non-zero sum Heffter arrays
- graph-decomposition
- graceful-labelings

Some motivation

This problem has connections to:

- Heffter arrays
- Non-zero sum Heffter arrays
- graph-decomposition
- graceful-labelings

For example:
The truth of the conjecture would show that any $\mathrm{NH}(n ; k)$ provides two orthogonal path decompositions of the complete graph $K_{2 n k+1}$.

Some known results

Let G be an abelian group of order n and $S \subseteq G \backslash\{0\}$ of size k. Then S is sequenceable in the following cases:
(1) $k \leq 9$ [Alspach and Liversidge]

Some known results

Let G be an abelian group of order n and $S \subseteq G \backslash\{0\}$ of size k. Then S is sequenceable in the following cases:
(1) $k \leq 9$ [Alspach and Liversidge]
(2) $k=10$ when n is prime [Hicks, Ollis and Schmitt]

Some known results

Let G be an abelian group of order n and $S \subseteq G \backslash\{0\}$ of size k. Then S is sequenceable in the following cases:
(1) $k \leq 9$ [Alspach and Liversidge]
(2) $k=10$ when n is prime [Hicks, Ollis and Schmitt]
(3) $k=n-3$ when n is prime and $\sum S=0$ [H.O.S.]

Some known results

Let G be an abelian group of order n and $S \subseteq G \backslash\{0\}$ of size k. Then S is sequenceable in the following cases:
(1) $k \leq 9$ [Alspach and Liversidge]
(2) $k=10$ when n is prime [Hicks, Ollis and Schmitt]
(3) $k=n-3$ when n is prime and $\sum S=0$ [H.O.S.]
(4) $k=n-2$ when G is cyclic and $\sum S \neq 0$ [Bode, Harborth]

Some known results

Let G be an abelian group of order n and $S \subseteq G \backslash\{0\}$ of size k. Then S is sequenceable in the following cases:
(1) $k \leq 9$ [Alspach and Liversidge]
(2) $k=10$ when n is prime [Hicks, Ollis and Schmitt]
(3) $k=n-3$ when n is prime and $\sum S=0$ [H.O.S.]
(4) $k=n-2$ when G is cyclic and $\sum S \neq 0$ [Bode, Harborth]
(5) $k=n-1$ [Alspach, Kreher and Pastine - Gordon]

Some known results

Let G be an abelian group of order n and $S \subseteq G \backslash\{0\}$ of size k. Then S is sequenceable in the following cases:
(1) $k \leq 9$ [Alspach and Liversidge]
(2) $k=10$ when n is prime [Hicks, Ollis and Schmitt]
(3) $k=n-3$ when n is prime and $\sum S=0$ [H.O.S.]
(4) $k=n-2$ when G is cyclic and $\sum S \neq 0$ [Bode, Harborth]
(5) $k=n-1$ [Alspach, Kreher and Pastine - Gordon]
(6) $n \leq 21$ and $n \leq 23$ when $\sum S=0$ [C. M. P. P.]

Some known results

Let G be an abelian group of order n and $S \subseteq G \backslash\{0\}$ of size k. Then S is sequenceable in the following cases:
(1) $k \leq 9$ [Alspach and Liversidge]
(2) $k=10$ when n is prime [Hicks, Ollis and Schmitt]
(3) $k=n-3$ when n is prime and $\sum S=0$ [H.O.S.]
(4) $k=n-2$ when G is cyclic and $\sum S \neq 0$ [Bode, Harborth]
(5) $k=n-1$ [Alspach, Kreher and Pastine - Gordon]
(6) $n \leq 21$ and $n \leq 23$ when $\sum S=0$ [C. M. P. P.]
(7) $n \leq 25$ when G is cyclic and $\sum S=0$ [Archdeacon, Dinitz]

The Non-Vanishing Corollary

Theorem (Alon '99)

Let \mathbb{F} be a finite field, $f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ be a polynomial in $\mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{k}\right]$ and let $C_{1}, C_{2}, \ldots, C_{k}$ be subsets of \mathbb{F}. If there exists a monomial of maximum degree with non-zero coefficient in f that divides $x_{1}^{\left|C_{1}\right|-1} \cdots x_{k}^{\left|C_{k}\right|-1}$ then there are $e_{1} \in C_{1}, \ldots, e_{k} \in C_{k}$ such that $f\left(e_{1}, e_{2}, \ldots, e_{k}\right) \neq 0$.

Call $x_{1}^{\left|C_{1}\right|-1} \cdots x_{k}^{\left|C_{k}\right|-1}$ the bounding monomial.

The Non-Vanishing Corollary

Theorem (Alon '99)

Let \mathbb{F} be a finite field, $f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ be a polynomial in $\mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{k}\right]$ and let $C_{1}, C_{2}, \ldots, C_{k}$ be subsets of \mathbb{F}. If there exists a monomial of maximum degree with non-zero coefficient in f that divides $x_{1}^{\left|C_{1}\right|-1} \cdots x_{k}^{\left|C_{k}\right|-1}$ then there are $e_{1} \in C_{1}, \ldots, e_{k} \in C_{k}$ such that $f\left(e_{1}, e_{2}, \ldots, e_{k}\right) \neq 0$.

Call $x_{1}^{\left|C_{1}\right|-1} \cdots x_{k}^{\left|C_{k}\right|-1}$ the bounding monomial.
Let p be prime and take $S \subseteq \mathbb{Z}_{p} \backslash\{0\}$ with $|S|=k$. To use the NVC, we take each $C_{i}=S$ and we need a polynomial f that is nonzero exactly when $\left(x_{1}, \ldots, x_{k}\right)$ is a sequencing of S.

\mathbb{Z}_{p} set up

Hicks, Ollis and Schmitt introduced the following polynomial

$$
\prod_{1 \leq i<j \leq k}\left(x_{j}-x_{i}\right) \prod_{\substack{0 \leq i<j \leq k \\(i, j) \neq(0, k), j \neq i+1}}\left(y_{j}-y_{i}\right)
$$

That gives
$f=\prod_{1 \leq i<j \leq k}\left(x_{j}-x_{i}\right) \prod_{0 \leq i<j \leq k, j \neq i+1}\left(x_{i+1}+\ldots+x_{j}\right) /\left(x_{1}+\ldots+x_{k}\right)$
To apply the NVC we need a nonzero coefficient on a monomial in f that divides $x_{1}^{k-1} \cdots x_{k}^{k-1}$ which has degree $k(k-1)$. Since $\operatorname{deg}(f)=k(k-1)-1$ there are k monomials that could work.

\mathbb{Z}_{p} results

Theorem (Hicks, Ollis and Schmitt '18)
For $G=\mathbb{Z}_{p}$ with p an odd prime and $|S| \leq 10, S$ is sequenceable.

\mathbb{Z}_{p} results

Theorem (Hicks, Ollis and Schmitt '18)
For $G=\mathbb{Z}_{p}$ with p an odd prime and $|S| \leq 10, S$ is sequenceable.

Theorem (Costa, Della Fiore, Ollis and R-Frydman '22)
For $G=\mathbb{Z}_{p}$ with p an odd prime and $|S|=11,12, S$ is sequenceable.

\mathbb{Z}_{p} results

Theorem (Hicks, Ollis and Schmitt '18)
For $G=\mathbb{Z}_{p}$ with p an odd prime and $|S| \leq 10, S$ is sequenceable.

Theorem (Costa, Della Fiore, Ollis and R-Frydman '22)
For $G=\mathbb{Z}_{p}$ with p an odd prime and $|S|=11,12, S$ is sequenceable.
For $S \subseteq \mathbb{Z}_{p} \backslash\{0\},|S|=12$ we have

monomial	coefficient
$x_{1}^{10} x_{2}^{11} x_{3}^{11} \cdots x_{12}^{11}$	$2^{4} \cdot 3 \cdot 29 \cdot 12953077208391719881$
$x_{1}^{1} x_{2}^{10} x_{3}^{11} \cdots x_{12}^{11}$	$2^{3} \cdot 3 \cdot 277 \cdot 1901 \cdot 786640832519761$

$\mathbb{Z}_{p} \times \mathbb{Z}_{2}$ example

Suppose we have $S \subseteq \mathbb{Z}_{p} \times \mathbb{Z}_{2} \backslash\{(0,0)\},|S|=5$ and 3 of the elements are in coset 0 and 2 of them in coset 1 .

$\mathbb{Z}_{p} \times \mathbb{Z}_{2}$ example

Suppose we have $S \subseteq \mathbb{Z}_{p} \times \mathbb{Z}_{2} \backslash\{(0,0)\},|S|=5$ and 3 of the elements are in coset 0 and 2 of them in coset 1 .

We look for a sequencing of the form

$$
\mathbf{x}=\left(\left(x_{1}, 0\right),\left(x_{2}, 1\right),\left(x_{3}, 0\right),\left(x_{4}, 0\right),\left(x_{5}, 1\right)\right)
$$

which has partial sums

$$
\mathbf{y}=\left(\left(y_{0}, 0\right),\left(y_{1}, 0\right),\left(y_{2}, 1\right),\left(y_{3}, 1\right),\left(y_{4}, 1\right),\left(y_{5}, 0\right)\right)
$$

$\mathbb{Z}_{p} \times \mathbb{Z}_{2}$ example

Suppose we have $S \subseteq \mathbb{Z}_{p} \times \mathbb{Z}_{2} \backslash\{(0,0)\},|S|=5$ and 3 of the elements are in coset 0 and 2 of them in coset 1 .

We look for a sequencing of the form

$$
\mathbf{x}=\left(\left(x_{1}, 0\right),\left(x_{2}, 1\right),\left(x_{3}, 0\right),\left(x_{4}, 0\right),\left(x_{5}, 1\right)\right)
$$

which has partial sums

$$
\mathbf{y}=\left(\left(y_{0}, 0\right),\left(y_{1}, 0\right),\left(y_{2}, 1\right),\left(y_{3}, 1\right),\left(y_{4}, 1\right),\left(y_{5}, 0\right)\right)
$$

Factors of the polynomial needed:

$$
\left(x_{3}-x_{1}\right)\left(x_{4}-x_{1}\right)\left(x_{4}-x_{3}\right)\left(x_{5}-x_{2}\right)\left(y_{5}-y_{1}\right)\left(y_{4}-y_{2}\right)
$$

This has degree 6 . The monomial $x_{1}^{2} x_{3}^{2} x_{4} x_{5}$ has coefficient -1 and it divides $x_{1}^{2} x_{2} x_{3}^{2} x_{4}^{2} x_{5}$. Therefore S has a sequencing.

General method for $\mathbb{Z}_{p} \times \mathbb{Z}_{t}$

The type of $S \subseteq \mathbb{Z}_{p} \times \mathbb{Z}_{t} \backslash\{(0,0)\}$ is $\left(\lambda_{0}, \ldots, \lambda_{t-1}\right)$, where λ_{i} is the number of elements of S in coset i.

Given $k=|S|$, for each type we choose an ordering a of the cosets (with repetition) with partial sums b. Following the previous example we construct the polynomial

$$
f=\prod_{\substack{1 \leq i<j \leq k \\ a_{i}=a_{j}}}\left(x_{j}-x_{i}\right) \prod_{\substack{0 \leq i<j \leq k \\ b_{i}=b_{j} \\ j \neq i+1 \\(i, j) \neq(0, k)}}\left(y_{j}-y_{i}\right)
$$

General method for $\mathbb{Z}_{p} \times \mathbb{Z}_{t}$

The type of $S \subseteq \mathbb{Z}_{p} \times \mathbb{Z}_{t} \backslash\{(0,0)\}$ is $\left(\lambda_{0}, \ldots, \lambda_{t-1}\right)$, where λ_{i} is the number of elements of S in coset i.

Given $k=|S|$, for each type we choose an ordering a of the cosets (with repetition) with partial sums b. Following the previous example we construct the polynomial

$$
f=\prod_{\substack{1 \leq i<j \leq k \\ a_{i}=a_{j}}}\left(x_{j}-x_{i}\right) \prod_{\substack{0 \leq i<j \leq k \\ b_{i}=b_{j} \\ j \neq i+1 \\(i, j) \neq(0, k)}}\left(y_{j}-y_{i}\right)
$$

Extra trick. If the degree of f is sufficiently smaller than the degree of the bounding monomial, then we can decide to fix the positions of some elements of S to get a lower-degree polynomial to work with.

Additional trick - $\mathbb{Z}_{p} \times \mathbb{Z}_{2}$ example

Let $G=\mathbb{Z}_{p} \times \mathbb{Z}_{2}, S \subseteq G \backslash\{(0,0)\},|S|=7$ and type $(5,2)$, $\mathbf{a}=(0,0,1,0,0,0,1), \mathbf{b}=(0,0,0,1,1,1,1,0)$.

Additional trick - $\mathbb{Z}_{p} \times \mathbb{Z}_{2}$ example

Let $G=\mathbb{Z}_{p} \times \mathbb{Z}_{2}, S \subseteq G \backslash\{(0,0)\},|S|=7$ and type $(5,2)$, $\mathbf{a}=(0,0,1,0,0,0,1), \mathbf{b}=(0,0,0,1,1,1,1,0)$.

We desire a sequencing of the form

$$
\left(\left(x_{1}, 0\right),\left(x_{2}, 0\right),\left(x_{3}, 1\right),\left(x_{4}, 0\right),\left(x_{5}, 0\right),\left(x_{6}, 0\right),\left(x_{7}, 1\right)\right)
$$

with partial sums

$$
\left(\left(y_{0}, 0\right),\left(y_{1}, 0\right),\left(y_{2}, 0\right),\left(y_{3}, 1\right),\left(y_{4}, 1\right)\left(y_{5}, 1\right),\left(y_{6}, 1\right),\left(y_{7}, 0\right)\right)
$$

Additional trick - $\mathbb{Z}_{p} \times \mathbb{Z}_{2}$ example

Let $G=\mathbb{Z}_{p} \times \mathbb{Z}_{2}, S \subseteq G \backslash\{(0,0)\},|S|=7$ and type $(5,2)$, $\mathbf{a}=(0,0,1,0,0,0,1), \mathbf{b}=(0,0,0,1,1,1,1,0)$.
We desire a sequencing of the form

$$
\left(\left(x_{1}, 0\right),\left(x_{2}, 0\right),\left(x_{3}, 1\right),\left(x_{4}, 0\right),\left(x_{5}, 0\right),\left(x_{6}, 0\right),\left(x_{7}, 1\right)\right)
$$

with partial sums

$$
\left(\left(y_{0}, 0\right),\left(y_{1}, 0\right),\left(y_{2}, 0\right),\left(y_{3}, 1\right),\left(y_{4}, 1\right)\left(y_{5}, 1\right),\left(y_{6}, 1\right),\left(y_{7}, 0\right)\right)
$$

The polynomial is

$$
\begin{aligned}
f= & \left(x_{2}-x_{1}\right)\left(x_{4}-x_{1}\right)\left(x_{5}-x_{1}\right)\left(x_{6}-x_{1}\right)\left(x_{4}-x_{2}\right)\left(x_{5}-x_{2}\right) \\
& \left(x_{6}-x_{2}\right)\left(x_{7}-x_{3}\right)\left(x_{5}-x_{4}\right)\left(x_{6}-x_{4}\right)\left(x_{6}-x_{5}\right)\left(y_{2}-y_{0}\right) \\
& \left(y_{7}-y_{1}\right)\left(y_{7}-y_{2}\right)\left(y_{5}-y_{3}\right)\left(y_{6}-y_{3}\right)\left(y_{6}-y_{4}\right)
\end{aligned}
$$

Additional trick - $\mathbb{Z}_{p} \times \mathbb{Z}_{2}$ example

The polynomial f has degree 17 . We need to find a monomial that divides $x_{1}^{4} x_{2}^{4} x_{3} x_{4}^{4} x_{5}^{4} x_{6}^{4} x_{7}$ of degree 22 .

Fix $x_{3}=c_{1}$ and $x_{6}=c_{2}$ where $\left(c_{1}, 1\right),\left(c_{2}, 0\right) \in S$.
Hence we get the following simplified polynomial

$$
\begin{aligned}
f^{\prime}= & \left(x_{2}-x_{1}\right)\left(x_{4}-x_{1}\right)\left(x_{5}-x_{1}\right)\left(x_{4}-x_{2}\right)\left(x_{5}-x_{2}\right)\left(x_{5}-x_{4}\right) \\
& \left(x_{1}+x_{2}\right)\left(x_{4}+x_{5}\right)\left(x_{2}+c_{1}+x_{4}+x_{5}+c_{2}+x_{7}\right) \\
& \left(c_{1}+x_{4}+x_{5}+c_{2}+x_{7}\right)\left(x_{4}+x_{5}+c_{2}\right)\left(x_{5}+c_{2}\right)
\end{aligned}
$$

In this case we need a monomial that divides $x_{1}^{3} x_{2}^{3} x_{4}^{3} x_{5}^{3}$. The degree of f^{\prime} is 12 and the monomial $x_{1}^{3} x_{2}^{3} x_{4}^{3} x_{5}^{3}$ has coefficient -2 in f^{\prime}. Therefore S has a sequencing.

A result

Theorem (Costa, Della Fiore, Ollis, Rovner-Frydman)

Let $p>5$ be prime and let $G=\mathbb{Z}_{p} \times \mathbb{Z}_{2} \cong \mathbb{Z}_{2 p}, S \subseteq G \backslash\{(0,0)\}$, $|S|=10$. Then S is sequenceable.

There are 11 types to consider in this case

Type	\mathbf{a}	deg	monomial/s	coefficient/s
$(10,0)$	$(0,0,0,0,0,0,0,0,0,0)$	89	$x_{1}^{8} x_{2}^{9} x_{3}^{9} x_{4}^{9} x_{5}^{9} x_{6}^{9} x_{7}^{9} x_{8}^{9} x_{9}^{9} x_{10}^{9}$	$2^{5} \cdot 7 \cdot 11^{2} \cdot 21966239$ $2 \cdot 13$
$(9,1)$	$(0,0,0,0,0,1,0,0,0,0)$	52	$x_{2}^{2} x_{3}^{4} x_{4}^{7} x_{5}^{8} x_{4}^{9} x_{7}^{7} x_{8}^{8} x_{9}^{9} x_{9}^{9} x_{10}^{8} x_{7}^{9} x_{8}^{9} x_{9}^{9} x_{10}^{9}$	$-1 \cdot 2^{2}$
$(8,2)$	$(0,1,0,0,0,0,1,0,0,0)$	45	$x_{1} x_{3} x_{4}^{7} x_{5}^{7} x_{6}^{7} x_{7} x_{8}^{7} x_{9}^{7} x_{10}^{7}$	$-1 \cdot 2 \cdot 3 \cdot 7$
$(7,3)$	$(0,0,0,0,1,0,0,0,1,1)$	42	$x_{2}^{6} x_{3}^{6} x_{4}^{6} x_{5}^{2} x_{6}^{6} x_{7}^{6} x_{8}^{6} x_{9}^{2} x_{10}^{2}$	$-1 \cdot 2 \cdot 3 \cdot 7$
$(6,4)$	$(0,0,0,1,0,0,0,1,1,1)$	39	$x_{1}^{5} x_{2}^{5} x_{3}^{5} x_{4}^{3} x_{5}^{5} x_{6}^{5} x_{7}^{3} x_{8}^{3} x_{9}^{3} x_{10}^{2}$	$2 \cdot 5$
$(5,5)$	$(0,0,0,1,0,0,1,1,1,1)$ $(0,1,0,1,0,1,0,1,0,1)$	40	$x_{1}^{4} x_{2}^{4} x_{3}^{4} x_{4}^{4} x_{5}^{4} x_{6}^{4} x_{7}^{4} x_{8}^{4} x_{9}^{4} x_{10}^{4}$	$x_{1}^{4} x_{2}^{4} x_{3}^{4} x_{4}^{4} x_{5}^{4} x_{6}^{4} x_{7}^{4} x_{8}^{4} x_{9}^{4} x_{10}^{4}$

A result

Theorem (Costa, Della Fiore, Ollis, Rovner-Frydman)
Let $p>5$ be prime and let $G=\mathbb{Z}_{p} \times \mathbb{Z}_{2} \cong \mathbb{Z}_{2 p}$, $S \subseteq G \backslash\{(0,0)\}$, $|S|=10$. Then S is sequenceable.

There are 11 types to consider in this case

Type	a	deg	monomial/s	coefficient/s
$(4,6)$	$(0,1,0,1,1,1,1,0,1,0)$	41	$\begin{aligned} & x_{1}^{2} x_{2}^{5} x_{3}^{3} x_{4}^{5} x_{5}^{5} x_{6}^{5} x_{7}^{5} x_{8}^{3} x_{9}^{5} x_{10}^{3} \\ & x_{1}^{3} x_{2}^{4} x_{3}^{3} x_{4}^{5} x_{5}^{5} x_{6}^{5} x_{7}^{5} x_{8}^{3} x_{9}^{5} x_{10}^{3} \end{aligned}$	$\begin{aligned} & 2^{4} \cdot 3 \cdot 5 \cdot 13 \\ & 2 \cdot 3 \cdot 463 \end{aligned}$
$(3,7)$	$(0,0,1,0,1,1,1,1,1,1)$	46	$x_{2}^{2} x_{3}^{6} x_{4}^{2} x_{5}^{6} x_{6}^{6} x_{7}^{6} x_{8}^{6} x_{9}^{6} x_{10}^{6}$	$-1 \cdot 2^{3} \cdot 3^{2}$
$(2,8)$	$(0,1,0,1,1,1,1,1,1,1)$	51	$\begin{aligned} & x_{1} x_{2} x_{3} x_{4}^{6} x_{5}^{7} x_{6}^{7} x_{7}^{7} x_{8}^{7} x_{9}^{7} x_{10}^{7} \\ & x_{1} x_{3} x_{4}^{7} x_{5}^{7} x_{6}^{7} x_{7}^{7} x_{8}^{7} x_{9}^{7} x_{10}^{7} \end{aligned}$	$\begin{aligned} & -1 \cdot 2 \cdot 1277 \\ & -1 \cdot 2 \cdot 17^{2} \end{aligned}$
$(1,9)$	$(1,0,1,1,1,1,1,1,1,1)$	60	$\begin{aligned} & x_{1}^{2} x_{3}^{2} x_{4}^{8} x_{5}^{8} x_{6}^{8} x_{7}^{8} x_{8}^{8} x_{9}^{8} x_{10}^{8} \\ & x_{1}^{2} x_{3}^{3} x_{4}^{7} x_{5}^{8} x_{6}^{8} x_{7}^{8} x_{8}^{8} x_{9}^{8} x_{10}^{8} \end{aligned}$	$\begin{aligned} & 2 \cdot 17^{2} \\ & 2^{2} \cdot 647 \end{aligned}$
$(0,10)$	$(1,1,1,1,1,1,1,1,1,1)$	69	$x_{1}^{2} x_{2}^{2} x_{3}^{4} x_{4}^{9} x_{5}^{7} x_{6}^{9} x_{7}^{9} x_{8}^{9} x_{9}^{9} x_{10}^{9}$	$2^{5} \cdot 3^{2} \cdot 5$

Overall results

Theorem (Costa, Della Fiore, Ollis, Rovner-Frydman)
Let $n=p t$ with p prime. Then subsets S of size k of $\mathbb{Z}_{n} \backslash\{0\}$ are sequenceable in the following cases:

- $k \leq 11$ and $t \leq 5$,
- $k=12$ and $t \leq 4$,
- $k=13$ and $t \in\{2,3\}$, provided S contains at least one element not in the subgroup of order p,
- $k=14$ and $t=2$, provided S contains at least one element not in the subgroup of order p,
- $k=15$ and $t=2$, provided S does not contain exactly 0, 1, 2 or 15 elements of the subgroup of order p.

Asymptotic results

Using linear algebra arguments we have obtained the following asymptotic results.

Theorem (Costa, Della Fiore, Ollis, Rovner-Frydman)
Let $n=m t$ where all the prime factors of m are bigger than
$k!/ 2$. Then subsets S of size k of $\mathbb{Z}_{n} \backslash\{0\}$ are sequenceable in the same cases of the previous theorem.

Thank you.

