On Sequences in Cyclic Groups with Distinct Partial Sums

Stefano Della Fiore

Università degli studi di Brescia Dipartimento di Ingegneria dell'Informazione

Joint work with S. Costa, M. Ollis, S. Z. Rovner-Frydman

Combinatorics, Mantova, 2022

Some notation

Let S be a subset of size k of a finite abelian group G of order n. Let $\mathbf{x} = (x_1, x_2, \dots, x_k)$ be an ordering of the elements of S and define its **partial sums** by $\mathbf{y} = (y_0, y_1, y_2, \dots, y_k)$ where

$$y_0 = 0, y_1 = x_1, y_2 = x_1 + x_2, \dots, y_k = x_1 + x_2 + \dots + x_k$$

Some notation

Let S be a subset of size k of a finite abelian group G of order n. Let $\mathbf{x} = (x_1, x_2, \dots, x_k)$ be an ordering of the elements of S and define its **partial sums** by $\mathbf{y} = (y_0, y_1, y_2, \dots, y_k)$ where

$$y_0 = 0, y_1 = x_1, y_2 = x_1 + x_2, \dots, y_k = x_1 + x_2 + \dots + x_k$$

Call an ordering of S with distinct partial sums, with the only exception that $\sum S$ can be equal to 0, a sequencing.

If S admits a sequencing then it is called **sequenceable**.

Some notation

Let S be a subset of size k of a finite abelian group G of order n. Let $\mathbf{x} = (x_1, x_2, \dots, x_k)$ be an ordering of the elements of S and define its **partial sums** by $\mathbf{y} = (y_0, y_1, y_2, \dots, y_k)$ where

$$y_0 = 0, y_1 = x_1, y_2 = x_1 + x_2, \dots, y_k = x_1 + x_2 + \dots + x_k$$

Call an ordering of S with distinct partial sums, with the only exception that $\sum S$ can be equal to 0, a **sequencing**.

If S admits a sequencing then it is called **sequenceable**.

Conjecture

Let G be a finite abelian group. Then, every subset $S \subseteq G \setminus \{0\}$ is sequenceable.

Some motivation

This problem has connections to:

- Heffter arrays
- Non-zero sum Heffter arrays
- graph-decomposition
- graceful-labelings
- . . .

Some motivation

This problem has connections to:

- Heffter arrays
- Non-zero sum Heffter arrays
- graph-decomposition
- graceful-labelings
- . . .

For example:

The truth of the conjecture would show that any NH(n; k) provides two orthogonal path decompositions of the complete graph K_{2nk+1} .

Let G be an abelian group of order n and $S \subseteq G \setminus \{0\}$ of size k. Then S is sequenceable in the following cases:

() $k \leq 9$ [Alspach and Liversidge]

- (1) $k \leq 9$ [Alspach and Liversidge]
- **2** k = 10 when n is prime [Hicks, Ollis and Schmitt]

- (1) $k \leq 9$ [Alspach and Liversidge]
- **2** k = 10 when n is prime [Hicks, Ollis and Schmitt]
- **3** k = n 3 when n is prime and $\sum S = 0$ [H.O.S.]

- (1) $k \leq 9$ [Alspach and Liversidge]
- **2** k = 10 when n is prime [Hicks, Ollis and Schmitt]
- **8** k = n 3 when n is prime and $\sum S = 0$ [H.O.S.]
- (4) k = n 2 when G is cyclic and $\sum S \neq 0$ [Bode, Harborth]

- (1) $k \leq 9$ [Alspach and Liversidge]
- **2** k = 10 when n is prime [Hicks, Ollis and Schmitt]
- **8** k = n 3 when n is prime and $\sum S = 0$ [H.O.S.]
- (4) k = n 2 when G is cyclic and $\sum S \neq 0$ [Bode, Harborth]
- **6** k = n 1 [Alspach, Kreher and Pastine Gordon]

Let G be an abelian group of order n and $S \subseteq G \setminus \{0\}$ of size k. Then S is sequenceable in the following cases:

$$1 k \leq 9$$
 [Alspach and Liversidge]

2 k = 10 when n is prime [Hicks, Ollis and Schmitt]

3
$$k = n - 3$$
 when n is prime and $\sum S = 0$ [H.O.S.]

4
$$k = n - 2$$
 when G is cyclic and $\sum S \neq 0$ [Bode, Harborth]

5
$$k = n - 1$$
 [Alspach, Kreher and Pastine - Gordon]

6
$$n \leq 21$$
 and $n \leq 23$ when $\sum S = 0$ [C. M. P. P.]

Let G be an abelian group of order n and $S \subseteq G \setminus \{0\}$ of size k. Then S is sequenceable in the following cases:

$$1 k \leq 9$$
 [Alspach and Liversidge]

2 k = 10 when n is prime [Hicks, Ollis and Schmitt]

3
$$k = n - 3$$
 when n is prime and $\sum S = 0$ [H.O.S.]

(4)
$$k = n - 2$$
 when G is cyclic and $\sum S \neq 0$ [Bode, Harborth]

5
$$k = n - 1$$
 [Alspach, Kreher and Pastine - Gordon]

6
$$n \leq 21$$
 and $n \leq 23$ when $\sum S = 0$ [C. M. P. P.]

7 $n \leq 25$ when G is cyclic and $\sum S = 0$ [Archdeacon, Dinitz]

Theorem (Alon '99)

Let \mathbb{F} be a finite field, $f(x_1, x_2, \ldots, x_k)$ be a polynomial in $\mathbb{F}[x_1, x_2, \ldots, x_k]$ and let C_1, C_2, \ldots, C_k be subsets of \mathbb{F} . If there exists a monomial of maximum degree with non-zero coefficient in f that divides $x_1^{|C_1|-1} \cdots x_k^{|C_k|-1}$ then there are $e_1 \in C_1, \ldots, e_k \in C_k$ such that $f(e_1, e_2, \ldots, e_k) \neq 0$.

Call $x_1^{|C_1|-1} \cdots x_k^{|C_k|-1}$ the bounding monomial.

Theorem (Alon '99)

Let \mathbb{F} be a finite field, $f(x_1, x_2, \ldots, x_k)$ be a polynomial in $\mathbb{F}[x_1, x_2, \ldots, x_k]$ and let C_1, C_2, \ldots, C_k be subsets of \mathbb{F} . If there exists a monomial of maximum degree with non-zero coefficient in f that divides $x_1^{|C_1|-1} \cdots x_k^{|C_k|-1}$ then there are $e_1 \in C_1, \ldots, e_k \in C_k$ such that $f(e_1, e_2, \ldots, e_k) \neq 0$.

Call $x_1^{|C_1|-1} \cdots x_k^{|C_k|-1}$ the bounding monomial.

Let p be prime and take $S \subseteq \mathbb{Z}_p \setminus \{0\}$ with |S| = k. To use the NVC, we take each $C_i = S$ and we need a polynomial f that is nonzero exactly when (x_1, \ldots, x_k) is a sequencing of S.

 \mathbb{Z}_p set up

Hicks, Ollis and Schmitt introduced the following polynomial

$$\prod_{1 \le i < j \le k} (x_j - x_i) \prod_{\substack{0 \le i < j \le k \\ (i,j) \ne (0,k), j \ne i+1}} (y_j - y_i)$$

That gives

$$f = \prod_{1 \le i < j \le k} (x_j - x_i) \prod_{0 \le i < j \le k, j \ne i+1} (x_{i+1} + \ldots + x_j) \Big/ (x_1 + \ldots + x_k)$$

To apply the NVC we need a nonzero coefficient on a monomial in f that divides $x_1^{k-1} \cdots x_k^{k-1}$ which has degree k(k-1). Since $\deg(f) = k(k-1) - 1$ there are k monomials that could work.

Theorem (Hicks, Ollis and Schmitt '18) For $G = \mathbb{Z}_p$ with p an odd prime and $|S| \leq 10$, S is sequenceable.

Theorem (Hicks, Ollis and Schmitt '18) For $G = \mathbb{Z}_p$ with p an odd prime and $|S| \leq 10$, S is sequenceable.

Theorem (Costa, Della Fiore, Ollis and R-Frydman '22) For $G = \mathbb{Z}_p$ with p an odd prime and |S| = 11, 12, S is sequenceable.

Theorem (Hicks, Ollis and Schmitt '18) For $G = \mathbb{Z}_p$ with p an odd prime and $|S| \leq 10, S$ is sequenceable.

Theorem (Costa, Della Fiore, Ollis and R-Frydman '22) For $G = \mathbb{Z}_p$ with p an odd prime and |S| = 11, 12, S is sequenceable.

For $S \subseteq \mathbb{Z}_p \setminus \{0\}, |S| = 12$ we have

monomial	coefficient
1 2 0 12	$2^4 \cdot 3 \cdot 29 \cdot 12953077208391719881$
$x_1^{11}x_2^{10}x_3^{11}\cdots x_{12}^{11}$	$2^3 \cdot 3 \cdot 277 \cdot 1901 \cdot 786640832519761$

$\mathbb{Z}_p \times \mathbb{Z}_2$ example

Suppose we have $S \subseteq \mathbb{Z}_p \times \mathbb{Z}_2 \setminus \{(0,0)\}, |S| = 5 \text{ and } 3 \text{ of the elements are in coset } 0 \text{ and } 2 \text{ of them in coset } 1.$

$\mathbb{Z}_p \times \mathbb{Z}_2$ example

Suppose we have $S \subseteq \mathbb{Z}_p \times \mathbb{Z}_2 \setminus \{(0,0)\}, |S| = 5 \text{ and } 3 \text{ of the elements are in coset } 0 \text{ and } 2 \text{ of them in coset } 1.$

We look for a sequencing of the form

$$\mathbf{x} = ((x_1, 0), (x_2, 1), (x_3, 0), (x_4, 0), (x_5, 1))$$

which has partial sums

$$\mathbf{y} = ((y_0, 0), (y_1, 0), (y_2, 1), (y_3, 1), (y_4, 1), (y_5, 0))$$

$\mathbb{Z}_p \times \mathbb{Z}_2$ example

Suppose we have $S \subseteq \mathbb{Z}_p \times \mathbb{Z}_2 \setminus \{(0,0)\}, |S| = 5 \text{ and } 3 \text{ of the elements are in coset } 0 \text{ and } 2 \text{ of them in coset } 1.$

We look for a sequencing of the form

$$\mathbf{x} = ((x_1, 0), (x_2, 1), (x_3, 0), (x_4, 0), (x_5, 1))$$

which has partial sums

$$\mathbf{y} = ((y_0, 0), (y_1, 0), (y_2, 1), (y_3, 1), (y_4, 1), (y_5, 0))$$

Factors of the polynomial needed:

$$(x_3 - x_1)(x_4 - x_1)(x_4 - x_3)(x_5 - x_2)(y_5 - y_1)(y_4 - y_2)$$

This has degree 6. The monomial $x_1^2 x_3^2 x_4 x_5$ has coefficient -1 and it divides $x_1^2 x_2 x_3^2 x_4^2 x_5$. Therefore S has a sequencing.

General method for $\mathbb{Z}_p \times \mathbb{Z}_t$

The **type** of $S \subseteq \mathbb{Z}_p \times \mathbb{Z}_t \setminus \{(0,0)\}$ is $(\lambda_0, \ldots, \lambda_{t-1})$, where λ_i is the number of elements of S in coset *i*.

Given k = |S|, for each type we choose an ordering **a** of the cosets (with repetition) with partial sums **b**. Following the previous example we construct the polynomial

$$f = \prod_{\substack{1 \le i < j \le k \\ a_i = a_j}} (x_j - x_i) \prod_{\substack{0 \le i < j \le k \\ b_i = b_j \\ j \ne i + 1 \\ (i,j) \ne (0,k)}} (y_j - y_i)$$

General method for $\mathbb{Z}_p \times \mathbb{Z}_t$

The **type** of $S \subseteq \mathbb{Z}_p \times \mathbb{Z}_t \setminus \{(0,0)\}$ is $(\lambda_0, \ldots, \lambda_{t-1})$, where λ_i is the number of elements of S in coset *i*.

Given k = |S|, for each type we choose an ordering **a** of the cosets (with repetition) with partial sums **b**. Following the previous example we construct the polynomial

$$f = \prod_{\substack{1 \le i < j \le k \\ a_i = a_j}} (x_j - x_i) \prod_{\substack{0 \le i < j \le k \\ b_i = b_j \\ j \ne i + 1 \\ (i,j) \ne (0,k)}} (y_j - y_i)$$

Extra trick. If the degree of f is sufficiently smaller than the degree of the bounding monomial, then we can decide to fix the positions of some elements of S to get a lower-degree polynomial to work with.

Let $G = \mathbb{Z}_p \times \mathbb{Z}_2$, $S \subseteq G \setminus \{(0,0)\}, |S| = 7$ and type (5,2), $\mathbf{a} = (0,0,1,0,0,0,1), \mathbf{b} = (0,0,0,1,1,1,1,0).$

Let $G = \mathbb{Z}_p \times \mathbb{Z}_2$, $S \subseteq G \setminus \{(0,0)\}, |S| = 7$ and type (5,2), $\mathbf{a} = (0,0,1,0,0,0,1), \mathbf{b} = (0,0,0,1,1,1,1,0).$

We desire a sequencing of the form

$$((x_1, 0), (x_2, 0), (x_3, 1), (x_4, 0), (x_5, 0), (x_6, 0), (x_7, 1))$$

with partial sums

 $((y_0, 0), (y_1, 0), (y_2, 0), (y_3, 1), (y_4, 1)(y_5, 1), (y_6, 1), (y_7, 0))$

Let $G = \mathbb{Z}_p \times \mathbb{Z}_2$, $S \subseteq G \setminus \{(0,0)\}$, |S| = 7 and type (5,2), $\mathbf{a} = (0,0,1,0,0,0,1)$, $\mathbf{b} = (0,0,0,1,1,1,1,0)$.

We desire a sequencing of the form

$$((x_1,0),(x_2,0),(x_3,1),(x_4,0),(x_5,0),(x_6,0),(x_7,1))$$

with partial sums

$$((y_0, 0), (y_1, 0), (y_2, 0), (y_3, 1), (y_4, 1)(y_5, 1), (y_6, 1), (y_7, 0))$$

The polynomial is

$$f = (x_2 - x_1)(x_4 - x_1)(x_5 - x_1)(x_6 - x_1)(x_4 - x_2)(x_5 - x_2)$$
$$(x_6 - x_2)(x_7 - x_3)(x_5 - x_4)(x_6 - x_4)(x_6 - x_5)(y_2 - y_0)$$
$$(y_7 - y_1)(y_7 - y_2)(y_5 - y_3)(y_6 - y_3)(y_6 - y_4)$$

The polynomial f has degree 17. We need to find a monomial that divides $x_1^4 x_2^4 x_3 x_4^4 x_5^4 x_6^4 x_7$ of degree 22.

Fix $x_3 = c_1$ and $x_6 = c_2$ where $(c_1, 1), (c_2, 0) \in S$.

Hence we get the following simplified polynomial

$$f' = (x_2 - x_1)(x_4 - x_1)(x_5 - x_1)(x_4 - x_2)(x_5 - x_2)(x_5 - x_4)$$
$$(x_1 + x_2)(x_4 + x_5)(x_2 + c_1 + x_4 + x_5 + c_2 + x_7)$$
$$(c_1 + x_4 + x_5 + c_2 + x_7)(x_4 + x_5 + c_2)(x_5 + c_2)$$

In this case we need a monomial that divides $x_1^3 x_2^3 x_4^3 x_5^3$. The degree of f' is 12 and the monomial $x_1^3 x_2^3 x_4^3 x_5^3$ has coefficient -2 in f'. Therefore S has a sequencing.

A result

Theorem (Costa, Della Fiore, Ollis, Rovner-Frydman) Let p > 5 be prime and let $G = \mathbb{Z}_p \times \mathbb{Z}_2 \cong \mathbb{Z}_{2p}$, $S \subseteq G \setminus \{(0,0)\}$, |S| = 10. Then S is sequenceable.

There are 11 types to consider in this case

Type	а	deg	monomial/s	coefficient/s
(10,0)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	89	$\begin{array}{c} x_1^8 x_2^9 x_3^9 x_9^4 x_5^9 x_6^9 x_7^9 x_9^9 x_9^9 \\ x_1^9 x_2^8 x_3^9 x_9^9 x_5^9 x_6^9 x_7^9 x_8^9 x_9^9 x_{10}^9 \end{array}$	$\begin{array}{c} 2^5 \cdot 7 \cdot 11^2 \cdot 21966239 \\ 2 \cdot 13 \cdot 211 \cdot 256046627 \end{array}$
(9, 1)	(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0)	52	$x_2^2 x_3^4 x_4^7 x_5^8 x_7^7 x_8^8 x_9^8 x_{10}^8$	$-1 \cdot 2^2$
(8, 2)	(0, 1, 0, 0, 0, 0, 1, 0, 0, 0)	45	$x_1 x_3 x_4^7 x_5^7 x_6^7 x_7 x_8^7 x_9^7 x_{10}^7$	$-1 \cdot 2 \cdot 3 \cdot 7$
(7, 3)	(0, 0, 0, 0, 1, 0, 0, 0, 1, 1)	42	$x_2^6 x_3^6 x_4^6 x_5^2 x_6^6 x_7^6 x_8^6 x_9^2 x_{10}^2$	$-1 \cdot 2 \cdot 3 \cdot 7$
(6, 4)	(0, 0, 0, 1, 0, 0, 0, 1, 1, 1)	39	$x_1^5 x_2^5 x_3^5 x_4^3 x_5^5 x_6^5 x_7^3 x_8^3 x_9^3 x_{10}^2$	$2 \cdot 5$
(5, 5)	(0, 0, 0, 1, 0, 0, 1, 1, 1, 1) (0, 1, 0, 1, 0, 1, 0, 1, 0, 1)	$\begin{array}{c} 40\\ 40\end{array}$	$\begin{array}{c} x_1^4 x_2^4 x_3^4 x_4^4 x_5^4 x_6^4 x_7^4 x_8^4 x_9^4 x_{10}^4 \\ x_1^4 x_2^4 x_3^4 x_4^4 x_5^4 x_6^4 x_7^4 x_8^4 x_9^4 x_{10}^4 \end{array}$	$2^2 \cdot 157 \\ 5 \cdot 19 \cdot 41 \cdot 83$

A result

Theorem (Costa, Della Fiore, Ollis, Rovner-Frydman) Let p > 5 be prime and let $G = \mathbb{Z}_p \times \mathbb{Z}_2 \cong \mathbb{Z}_{2p}$, $S \subseteq G \setminus \{(0,0)\}$, |S| = 10. Then S is sequenceable.

There are 11 types to consider in this case

Type	а	deg	monomial/s	coefficient/s
(4, 6)	(0, 1, 0, 1, 1, 1, 1, 0, 1, 0)	41	$x_1^2 x_2^5 x_3^3 x_4^5 x_5^5 x_6^5 x_7^5 x_8^3 x_9^5 x_{10}^3 \ x_1^3 x_2^4 x_3^3 x_4^5 x_5^5 x_6^5 x_7^5 x_8^3 x_9^5 x_{10}^3$	$\begin{array}{c} 2^4 \cdot 3 \cdot 5 \cdot 13 \\ 2 \cdot 3 \cdot 463 \end{array}$
(3, 7)	(0, 0, 1, 0, 1, 1, 1, 1, 1, 1)	46	$x_2^2 x_3^6 x_4^2 x_5^6 x_6^6 x_6^6 x_8^6 x_9^6 x_{10}^6$	$-1\cdot 2^3\cdot 3^2$
(2, 8)	(0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1)	51	$x_1 x_2 x_3 x_4^6 x_5^7 x_6^7 x_7^7 x_8^7 x_9^7 x_{10}^7 \\ x_1 x_3 x_4^7 x_5^7 x_6^7 x_7^7 x_8^7 x_9^7 x_{10}^7 \\$	$-1 \cdot 2 \cdot 1277 \\ -1 \cdot 2 \cdot 17^2$
(1, 9)	(1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1)	60	$\begin{array}{c} x_1^2 x_3^2 x_4^8 x_5^8 x_6^8 x_7^8 x_8^8 x_9^8 x_{10}^8 \\ x_1^2 x_3^3 x_4^7 x_5^8 x_6^8 x_7^8 x_8^8 x_9^8 x_{10}^8 \end{array}$	$2 \cdot 17^2$ $2^2 \cdot 647$
(0, 10)	(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)	69	$x_1^2 x_2^2 x_3^4 x_9^9 x_5^7 x_6^9 x_7^9 x_8^9 x_9^9 x_{10}^9$	$2^5 \cdot 3^2 \cdot 5$

Overall results

Theorem (Costa, Della Fiore, Ollis, Rovner-Frydman)

Let n = pt with p prime. Then subsets S of size k of $\mathbb{Z}_n \setminus \{0\}$ are sequenceable in the following cases:

- $k \le 11 \text{ and } t \le 5$,
- $k = 12 \text{ and } t \le 4$,
- k = 13 and $t \in \{2, 3\}$, provided S contains at least one element not in the subgroup of order p,
- k = 14 and t = 2, provided S contains at least one element not in the subgroup of order p,
- k = 15 and t = 2, provided S does not contain exactly 0, 1, 2 or 15 elements of the subgroup of order p.

Using linear algebra arguments we have obtained the following asymptotic results.

Theorem (Costa, Della Fiore, Ollis, Rovner-Frydman) Let n = mt where all the prime factors of m are bigger than k!/2. Then subsets S of size k of $\mathbb{Z}_n \setminus \{0\}$ are sequenceable in the same cases of the previous theorem.

Thank you.